904 resultados para PHOSPHOLIPID-VESICLES
Resumo:
In this work, we report a 20-ns constant pressure molecular dynamics simulation of prilocaine (PLC), in amine-amide local anesthetic, in a hydrated liquid crystal bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine. The partition of PLC induces the lateral expansion of the bilayer and a concomitant contraction in its thickness. PLC molecules are preferentially found in the hydrophobic acyl chains region, with a maximum probability at similar to 12 angstrom from the center of the bilayer (between the C(4) and C(5) methylene groups). A decrease in the acyl chain segmental order parameter, vertical bar S-CD vertical bar, compared to neat bilayers, is found, in good agreement with experimental H-2-NMR studies. The decrease in vertical bar S-CD vertical bar induced by PLC is attributed to a larger accessible volume per lipid in the acyl chain region. (C) 2008 Wiley Periodicals, Inc.
Resumo:
In this work, we report a 20-ns constant pressure molecular dynamics simulation of the uncharged form of two amino-amide local anesthetics (LA). etidocaine and prilocaine, present at 1:3 LA:lipid, molar ratio inside the membrane, in the hydrated liquid crystal bilayer phase of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC). Both LAs induced lateral expansion and a concomitant contraction in the bilayer thickness. A decrease in the acyl chain segment order parameter, -S(CD), compared to neat bilayers, was also observed. Besides, both LA molecules got preferentially located in the hydrophobic acyl chains region, with a maximum probability at similar to 12 and similar to 10 angstrom from the center of the bilayer for prilocaine and etidocaine, respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Using the squid-vibrio association, we aimed to characterize the mechanism through which Vibrio fischeri cells signal morphogenesis of the symbiotic light-emitting organ. The symbiont releases two cell envelope molecules, peptidoglycan (PG) and lipopolysaccharide (LPS) that, within 12 h of light organ colonization, act in synergy to trigger normal tissue development. Recent work has shown that outer membrane vesicles (OMVs) produced by V. fischeri are sufficient to induce PG-dependent morphogenesis; however, the mechanism(s) of OMV release by these bacteria has not been described. Like several genera of both beneficial and pathogenic bacteria, V. fischeri cells elaborate polar flagella that are enclosed by an extension of the outer membrane, whose function remains unclear. Here, we present evidence that along with the well-recognized phenomenon of blebbing from the cell's surface, rotation of this sheathed flagellum also results in the release of OMVs. In addition, we demonstrate that most of the development-inducing LPS is associated with these OMVs and that the presence of the outer membrane protein OmpU but not the LPS O antigen on these OMVs is important in triggering normal host development. These results also present insights into a possible new mechanism of LPS release by pathogens with sheathed flagella. IMPORTANCE Determining the function(s) of sheathed flagella in bacteria has been challenging, because no known mutation results only in the loss of this outer membrane-derived casing. Nevertheless, the presence of a sheathed flagellum in such host-associated genera as Vibrio, Helicobacter, and Brucella has led to several proposed functions, including physical protection of the flagella and masking of their immunogenic flagellins. Using the squid-vibrio light organ symbiosis, we demonstrate another role, that of V. fischeri cells require rotating flagella to induce apoptotic cell death within surface epithelium, which is a normal step in the organ's development. Further, we present evidence that this rotation releases apoptosis-triggering lipopolysaccharide in the form of outer membrane vesicles. Such release may also occur by pathogens but with different outcomes for the host.
Resumo:
A novel approach to the determination of steroid entrapment in the bilayers of aerosolised liposomes has been introduced using high-sensitivity differential scanning calorimetry (DSC). Proliposomes were dispersed in water within an air-jet nebuliser and the energy produced during atomisation was used to hydrate the proliposomes and generate liposome aerosols. Proliposomes that included the steroid beclometasone dipropionate (BDP) produced lower aerosol and lipid outputs than steroid-free proliposomes. Size analysis and transmission electron microscopy showed an evidence of liposome formation within the nebuliser, which was followed by deaggregation and size reduction of multilamellar liposomes on nebulisation to a two-stage impinger. For each formulation, no difference in thermal transitions was observed between delivered liposomes and those remaining in the nebuliser. However, steroid (5 mole%) lowered the onset temperature and the enthalpy of the pretransition, and produced a similar onset temperature and larger enthalpy of the main transition, with broadened pretransition and main transitions. This indicates that BDP was entrapped and exhibited an interaction with the liposome phospholipid membranes. Since the pretransition was depressed but not completely removed and no phase separation occurred, it is suggested that the bilayers of the multilamellar liposomes can entrap more than 5 mole% BDP. Overall, liposomes were generated from proliposomes and DSC investigations indicated that the steroid was entrapped in the bilayers of aerosolised multilamellar vesicles.
Resumo:
The effectiveness of macrophages in the response to systemic candidiasis is crucial to an effective clearance of the pathogen. The secretion of proteins, mRNAs, non-coding RNAs and lipids through extracellular vesicles (EVs) is one of the mechanisms of communication between immune cells. EVs change their cargo to mediate different responses, and may play a role in the response against infections. Thus, we have undertaken the first quantitative proteomic analysis on the protein composition of THP1 macrophages-derived EVs during the interaction with Candida albicans. This study revealed changes in EVs sizes and in protein composition, and allowed the identification and quantification of 717 proteins. Of them, 133 proteins changed their abundance due to the interaction. The differentially abundant proteins were involved in functions relating to immune response, signaling, or cytoskeletal reorganization. THP1-derived EVs, both from control and from Candida-infected macrophages, had similar effector functions on other THP1-differenciated macrophages, activating ERK and p38 kinases, and increasing both the secretion of proinflammatory cytokines and the candidacidal activity; while in THP1 non-differenciated monocytes, only EVs from infected macrophages increased significantly the TNF-α secretion. Our findings provide new information on the role of macrophage-derived EVs in response to C. albicans infection and in macrophages communication.
Resumo:
Influenza A virus is an important human pathogen causative of yearly epidemics and occasional pandemics. The ability to replicate within the host cell is a determinant of virulence, amplifying viral numbers for host-to-host transmission. This process requires multiple rounds of entering permissive cells, replication, and virion assembly at the plasma membrane, the site of viral budding and release. The assembly of influenza A virus involves packaging of several viral (and host) proteins and of a segmented genome, composed of 8 distinct RNAs in the form of viral ribonucleoproteins (vRNPs). The selective assembly of the 8-segment core remains one of the most interesting unresolved problems in virology. The recycling endosome regulatory GTPase Rab11 was shown to contribute to the process, by transporting vRNPs to the periphery, giving rise to enlarged cytosolic puncta rich in Rab11 and the 8 vRNPs. We recently reported that vRNP hotspots were formed of clustered vesicles harbouring protruding electron-dense structures that resembled vRNPs. Mechanistically, vRNP hotspots were formed as vRNPs outcompeted the cognate effectors of Rab11, the Rab11-Family-Interacting-Proteins (FIPs) for binding, and as a consequence impair recycling sorting at an unknown step. Here, we speculate on the impact that such impairment might have in host immunity, membrane architecture and viral assembly.
Resumo:
Pancreatic cancer (PC) is the seventh leading cause of cancer death. Despite recent therapy advancements, 5-year survival is 11%. Resistance to therapy is common, and no predictive factors, except for BRCA1/2 and PALB2 mutations, can drive treatment selection. Based on the easy isolation of extracellular vesicles (EVs) from blood and the role of EV-borne miRNAs in chemoresistance, we analyzed EVs and their miRNA content in order to identify predictive factors. First, we analyzed samples from 28 PC patients and 7 healthy subjects, in order to establish methods for isolation and analysis of EVs and their miRNA content. We observed a significantly different expression of 28 miRNAs, including oncogenic or tumor suppressor miRNAs, showing the ability of our approach to detect candidate biomarkers. Then, we analyzed samples of 21 advanced PC patients, collected before first-line treatment with gemcitabine + nab-paclitaxel, and compared findings in responders and non-responders. EVs have been analyzed with Nanoparticle tracking analysis, flow cytometry and RNA-Seq; then, laboratory results have been matched with clinical data. Nanoparticle tracking analysis did not show any significant difference. Flow cytometry showed a lower expression of SSE4 and CD81 in responders. Finally, miRNA analysis showed 25 upregulated and 19 downregulated miRNAs in responders. In particular, in responders we observed upregulation of miR-141-3p, miR-141-5p, miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-375-3p, miR-429, miR-545-5p. These miRNAs have targets with a previously reported role in PC. In conclusion, we show the feasibility of the proposed approach to identify EV-derived biomarkers with predictive value for therapy with gemcitabine + nab-paclitaxel in PC. Our findings highlight the possibility to exploit liquid biopsy for personalized treatment in PC, in order to maximize chances of response and patients’ outcome. These findings are worthy of further investigation: in the same setting, with different chemotherapy schedules, and in different disease settings such as preoperative therapy.
Resumo:
Neuroinflammation is a crucial pathogenic mechanism that commonly underlies most neurodegenerative diseases. Microglia, the immune cells of the brain, play a critical role that changes depending on the stage of neuropathology: at early phases of brain diseases microglia display the neuroprotective phenotype which is switched to the classically activated pro-inflammatory subtype at later stages, contributing to neurodegeneration. The microglial phenotypic shift is characterized by a change in the release of bioactive molecules both soluble and through extracellular vesicles. Our in vitro studies aim to understand whether different types of activation could determine change in vesicles content, in particular miRNAs, and whether this could influence the activation state of control microglial cells. Microglial polarization has been induced in two different in vitro models: N9, microglial murine cell line, have been treated by using LPS towards a proinflammatory/neurotoxic phenotype or ATP towards antinflammatory/neuroprotective status; HMC3, human microglial cell line, have been activated using IFN-+ATP. We demonstrated that conditioned media/exosomes obtained from donor microglia were able to promote a pro-inflammatory phenotype in control cells, leading us to prove the existence of a neuroinflammation spreading process mediated by extracellular vesicles of microglia with a crucial role of miRNAs. Increased expression of miRNA-34a observed in N9 model underlines a possible contribution in the diffusion of proinflammatory activation of microglia. Thus, we tried to downregulate miR-34a expression using cleaving sequences of anti-mir-34a DNAzyme delivered by DNA nanostructures aimed to confirm the involvement of miR-34a in microglia polarization towards the neurotoxic phenotype. In conclusion, this thesis work reveal a new inflammation spreading mechanism that involves release of vesicles containing specific cargos by donor polarized microglia, particularly miRNAs, able to influence the phenotypic shift in unpolarized microglia: this process deserves to be deeply investigated as potential therapeutic target to counteract neurodegenerative diseases.
Resumo:
Extra cellular vesicles are membrane bound and lipid based nano particles having the size range of 30 to 1000 nm released by a plethora of cells. Their prime function is cellular communication but in the recent studies, the potential of these vesicles to maintain physiological and pathological processes as well as their nano-sized constituents opened doors to its applications in therapeutics, and diagnostics of variety of diseases such as cancer. Their main constituents include lipids, proteins, and RNAs. They are categorized into subtypes such as exosomes, micro-vesicles and apoptotic bodies In recent studies, extracellular vesicles that are derived from plants are gaining high regard due to their variety of advantages such as safety, non-toxicity, and high availability which promotes large scale production. EVs are isolated from mammalian and plant cells using multitude of techniques such as Ultracentrifugation, SEC, Precipitation and so on. Due to the variety in the sources as well as shortcomings arising from the isolation method, a scalable and inexpensive EV isolation method is yet to be designed. This study focusses on isolation of EVs from citrus lemon juice through diafiltration. Lemon is a promising source due to its biological properties to act as antioxidant, anticancer, and anti-inflammatory agents. Lemon derived vesicles was proven to have several proteins analogous to mammalian vesicles. A diafiltration could be carried out for successful removal of impurities and it is a scalable, continuous technique with potentially lower process times. The concentration of purified product and impurities are analysed using Size Exclusion Chromatography in analytical mode. It is also considered imperative to compare the results from diafiltration with gold standard UC. BCA is proposed to evaluate total protein content and DLS for size measurements. Finally, the ideal mode of storage of EVs to protect its internals and its structure is analysed with storage tests.
Resumo:
Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.
Resumo:
Membrane microdomains enriched in cholesterol, sphingolipids (rafts), and specific proteins are involved in important physiological functions. However their structure, size and stability are still controversial. Given that detergent-resistant membranes (DRMs) are in the liquid-ordered state and are rich in raft-like components, they might correspond to rafts at least to some extent. Here we monitor the lateral order of biological membranes by characterizing DRMs from erythrocytes obtained with Brij-98, Brij-58, and TX-100 at 4 °C and 37 °C. All DRMs were enriched in cholesterol and contained the raft markers flotillin-2 and stomatin. However, sphingomyelin (SM) was only found to be enriched in TX-100-DRMs - a detergent that preferentially solubilizes the membrane inner leaflet - while Band 3 was present solely in Brij-DRMs. Electron paramagnetic resonance spectra showed that the acyl chain packing of Brij-DRMs was lower than TX-100-DRMs, providing evidence of their diverse lipid composition. Fatty acid analysis revealed that the SM fraction of the DRMs was enriched in lignoceric acid, which should specifically contribute to the resistance of SM to detergents. These results indicate that lipids from the outer leaflet, particularly SM, are essential for the formation of the liquid-ordered phase of DRMs. At last, the differential solubilization process induced by Brij-98 and TX-100 was monitored using giant unilamellar vesicles. This study suggests that Brij and TX-100-DRMs reflect different degrees of lateral order of the membrane microdomains. Additionally, Brij DRMs are composed by both inner and outer leaflet components, making them more physiologically relevant than TX-100-DRMs to the studies of membrane rafts.
Resumo:
This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.
Resumo:
Ropivacaine (RVC) is an aminoamide local anesthetic widely used in surgical procedures. Studies with RVC encapsulated in liposomes and complexed in cyclodextrins have shown good results, but in order to use RVC for lengthy procedures and during the postoperative period, a still more prolonged anesthetic effect is required. This study therefore aimed to provide extended RVC release and increased upload using modified liposomes. Three types of vesicles were studied: (i) large multilamellar vesicle (LMV), (ii) large multivesicular vesicle (LMVV) and (iii) large unilamellar vesicle (LUV), prepared with egg phosphatidylcholine/cholesterol/α-tocopherol (4:3:0.07 mol%) at pH 7.4. Ionic gradient liposomes (inside: pH 5.5, pH 5.5 + (NH4)2SO4 and pH 7.4 + (NH4)2SO4) were prepared and showed improved RVC loading, compared to conventional liposomes (inside: pH 7.4). An high-performance liquid chromatography analytical method was validated for RVC quantification. The liposomes were characterized in terms of their size, zeta potential, polydispersion, morphology, RVC encapsulation efficiency (EE(%)) and in vitro RVC release. LMVV liposomes provided better performance than LMV or LUV. The best formulations were prepared using pH 5.5 (LMVV 5.5in) or pH 7.4 with 250 mM (NH4)2SO4 in the inner aqueous core (LMVV 7.4in + ammonium sulfate), enabling encapsulation of as much as 2% RVC, with high uptake (EE(%) ∼70%) and sustained release (∼25 h). The encapsulation of RVC in ionic gradient liposomes significantly extended the duration of release of the anesthetic, showing that this strategy could be a viable means of promoting longer-term anesthesia during surgical procedures and during the postoperative period.
Resumo:
The study assessed phloem canal development and ultra-structure in shoot apices of Spondias dulcis G. Forst., phloematic canal ultra-structure in shoot apices of Tapirira guianensis Aubl., and floral canal ultra-structure and development and fruit canal ultra-structure of the latter specie. The flower and fruit canals of Anacardium humile St.Hil. were also studied ultra-structurally. The canals in shoot apices of S. dulcis show schizo-lysigenous formation and the floral canals of T. guianensis show schizogenous development. Epithelial cells of S. dulcis and T. guianensis canals have rough endoplasmic reticulum, free ribosomes, elongated plastids of several shapes with osmiophilic inclusions and dictyosomes with production of vesicles. Such organelles participate in the secretion of a heterogeneous exudate, which is comprised of hydrophilic and lipophilic substances. The epithelial cells of the fruit of A. humile present elongated plastids with circular membrane system, which are involved in the synthesis of lipophilic substances. The results of the ultra-structural analyses of the epithelial cells corroborate the results previously obtained in a histochemical study. In the histochemical study, lipophilic and hydrophilic substances were identified in the canals of T. guinanensis and S. dulcis and only lipophilic substances were identified in the canals of A. humile. Based on the ultrastructural aspects of the secretory canals of T. guianensis and S. dulcis we concluded that the plastids of the epithelial cells of the two species are different although they produce secretion of similar composition. A new record for the family is the presence of a great number of circular plastids in epithelial cells of the fruit of Anacardium humile. The pattern found in the secretory canals of the studied species is the ecrine type of secretion release.