905 resultados para PCA and HCA
Resumo:
Background: Seaweeds are good sources of dietary fibre, which can influence glucose uptake and glycemic control.Objective: To investigate and compare the in vitro inhibitory activity of different extracts from Undaria pinnatifida (Wakame), Himanthalia elongata (Sea spaghetti) and Porphyra umbilicalis (Nori) on α-glucosidase activity and glucose diffusion.Methods: The in vitro effects chloroform-, ethanol- and water-soluble extracts of the three algae were assayed on α- glucosidase activity and glucose diffusion through membrane. Principal Components Analysis (PCA) was applied to identify patterns in the data and to discriminate which extract will show the most proper effect.Results: Only water extracts of Sea spaghetti possessed significant in vitro inhibitory effects on α-glucosidase activity (26.2% less mmol/L glucose production than control, p < 0.05) at 75 min. PCA distinguished Sea spaghetti effects, supporting that soluble fibre and polyphenols were involved. After 6 h, Ethanol-Sea spaghetti and water-Wakame extracts exerted the highest inhibitory effects on glucose diffusion (65.0% and 60.2% vs control, respectively). This extracts displayed the lowest slopes for glucose diffusion-time lineal adjustments (68.2% and 62.8% vs control, respectively).Conclusions: The seaweed hypoglycemic effects appear multi-faceted and not necessarily concatenated. According to present results, ethanol and water extracts of Sea spaghetti, and water extracts of Wakame could be useful for the development of functional foods with specific hypoglycemic properties.
Resumo:
Creep of Steel Fiber Reinforced Concrete (SFRC) under flexural loads in the cracked state and to what extent different factors determine creep behaviour are quite understudied topics within the general field of SFRC mechanical properties. A series of prismatic specimens have been produced and subjected to sustained flexural loads. The effect of a number of variables (fiber length and slenderness, fiber content, and concrete compressive strength) has been studied in a comprehensive fashion. Twelve response variables (creep parameters measured at different times) have been retained as descriptive of flexural creep behaviour. Multivariate techniques have been used: the experimental results have been projected to their latent structure by means of Principal Components Analysis (PCA), so that all the information has been reduced to a set of three latent variables. They have been related to the variables considered and statistical significance of their effects on creep behaviour has been assessed. The result is a unified view on the effects of the different variables considered upon creep behaviour: fiber content and fiber slenderness have been detected to clearly modify the effect that load ratio has on flexural creep behaviour.
Resumo:
Significant recent progress has shown ear recognition to be a viable biometric. Good recognition rates have been demonstrated under controlled conditions, using manual registration or with specialised equipment. This paper describes a new technique which improves the robustness of ear registration and recognition, addressing issues of pose variation, background clutter and occlusion. By treating the ear as a planar surface and creating a homography transform using SIFT feature matches, ears can be registered accurately. The feature matches reduce the gallery size and enable a precise ranking using a simple 2D distance algorithm. When applied to the XM2VTS database it gives results comparable to PCA with manual registration. Further analysis on more challenging datasets demonstrates the technique to be robust to background clutter, viewing angles up to +/- 13 degrees and with over 20% occlusion.
Resumo:
Chili powder is a globally traded commodity which has been found to be adulterated with Sudan dyes from 2003 onwards. In this study, chili powders were adulterated with varying quantities of Sudan I dye (0.1-5%) and spectra were generated using near infrared reflectance spectroscopy (NIRS) and Raman
spectroscopy (on a spectrometer with a sample compartment modified as part of the study). Chemometrics were applied to the spectral data to produce quantitative and qualitative calibration models and prediction statistics. For the quantitative models coefficients of determination (R2) were found to be
0.891-0.994 depending on which spectral data (NIRS/Raman) was processed, the mathematical algorithm used and the data pre-processing applied. The corresponding values for the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were found to be 0.208-0.851%
and 0.141-0.831% respectively, once again depending on the spectral data and the chemometric treatment applied to the data. Indications are that the NIR spectroscopy based models are superior to the models produced from Raman spectral data based on a comparison of the values of the chemometric
parameters. The limit of detection (LOD) based on analysis of 20 blank chili powders against each calibration model gave 0.25% and 0.88% for the NIR and Raman data, respectively. In addition, adopting a qualitative approach with the spectral data and applying PCA or PLS-DA, it was possible to discriminate
between adulterated chili powders from non-adulterated chili powders.
Resumo:
OBJECTIVE: To document prostate cancer patient reported 'ever experienced' and 'current' prevalence of disease specific physical symptoms stratified by primary treatment received.
PATIENTS: 3,348 prostate cancer survivors 2-15 years post diagnosis.
METHODS: Cross-sectional, postal survey of 6,559 survivors diagnosed 2-15 years ago with primary, invasive PCa (ICD10-C61) identified via national, population based cancer registries in Northern Ireland and Republic of Ireland. Questions included symptoms at diagnosis, primary treatments and physical symptoms (impotence/urinary incontinence/bowel problems/breast changes/loss of libido/hot flashes/fatigue) experienced 'ever' and at questionnaire completion ("current"). Symptom proportions were weighted by age, country and time since diagnosis. Bonferroni corrections were applied for multiple comparisons.
RESULTS: Adjusted response rate 54%; 75% reported at least one 'current' physical symptom ('ever':90%), with 29% reporting at least three. Prevalence varied by treatment; overall 57% reported current impotence; this was highest following radical prostatectomy (RP)76% followed by external beam radiotherapy with concurrent hormone therapy (HT); 64%. Urinary incontinence (overall 'current' 16%) was highest following RP ('current'28%, 'ever'70%). While 42% of brachytherapy patients reported no 'current' symptoms; 43% reported 'current' impotence and 8% 'current' incontinence. 'Current' hot flashes (41%), breast changes (18%) and fatigue (28%) were reported more often by patients on HT.
CONCLUSION: Symptoms following prostate cancer are common, often multiple, persist long-term and vary by treatment. They represent a significant health burden. An estimated 1.6% of men over 45 is a prostate cancer survivor currently experiencing an adverse physical symptom. Recognition and treatment of physical symptoms should be prioritised in patient follow-up. This information should facilitate men and clinicians when deciding about treatment as differences in survival between radical treatments is minimal.
Resumo:
Introduction and aims: The role bacteria play in the development and progression of Chronic Obstructive Pulmonary Disease (COPD) is unclear. We used culture-independent methods to describe differences and/or similarities in microbial communities in the lower airways of patients with COPD, healthy non-smokers and smokers.
Methods: Bronchial wash samples were collected from patients with COPD (GOLD 1–3; n = 18), healthy non-smokers (HV; n = 11) and healthy smokers (HS; n = 8). Samples were processed using the Illumina MiSeq platform. The Shannon-Wiener Index (SW) of diversity, lung obstruction (FEV1/FVC ratio) and ordination by Non-Metric Multidimensional Scaling (NMDS) on Bray-Curtis dissimilarity indices were analysed to evaluate how samples were related. Principal component analysis (PCA) was performed to assess the effect specific taxa had within each cohort. Characteristics of each cohort are shown in Table 1.
Results: There was no difference in taxa richness between cohorts (range: 69–71; p = 0.954). Diversity (SW Index) was significantly lower in COPD samples compared to samples from HV and HS (p = 0.009 and p = 0.033, respectively). There was no significant difference between HV and HS (p = 0.186). The FEV1/FVC ratio was significantly lower for COPD compared to HV (p = 9*10–8) and HS (p = 2*10–6), respectively. NMDS analysis showed that communities belonging to either of the healthy groups were more similar to each other than they were to samples belonging to the COPD group. PCA analysis showed that members of Streptococcus sp. and Haemophilus sp. had the largest effect on the variance explained in COPD. In HS, Haemophilus sp., Fusobaterium sp., Actinomyces sp., Prevotella sp. and Veillonella sp. had the largest effect on the variance explained, while in HV Neisseria sp., Porphyromonas sp., Actinomyces sp., Atopobium sp., Prevotella and Veillonella sp. had the largest effect on the variance explained.
Conclusions: The study demonstrates that microbial communities in the lower airways of patients with COPD are significantly different from that seen in healthy comparison groups. Patients with COPD had lower microbial diversity than either of the healthy comparison groups, higher relative abundance of members of Streptococcus sp. and lower relative abundance of a number of key anaerobes.Characteristics
Resumo:
Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are important mycotoxins in terms of
human exposure via food, their toxicity and regulatory limits that exist worldwide. Mixtures of toxins can frequently be present in foods, however due to the complications of determining their combined toxicity,
legal limits of exposure are determined for single compounds, based on long standing toxicological
techniques. High content analysis (HCA) may be a useful tool to determine total toxicity of complex
mixtures of mycotoxins. Endpoints including cell number (CN), nuclear intensity (NI), nuclear area (NA),
plasma membrane permeability (PMP), mitochondrial membrane potential (MMP) and mitochondrial
mass (MM) were compared to the conventional 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium
bromide (MTT) and neutral red (NR) endpoints in MDBK cells. Individual concentrations of each
mycotoxin (OTA 3mg/ml, FB1 8mg/ml and AFB11.28mg/ml) revealed no cytotoxicity with MTTor NR but
HCA showed significant cytotoxic effects up to 41.6% (p0.001) and 10.1% (p0.05) for OTA and AFB1,
respectively. The tertiary mixture (OTA 3mg/ml, FB1 8mg/ml and AFB1 1.28mg/ml) detected up to 37.3%
and 49.8% more cytotoxicity using HCA over MTT and NR, respectively. Whilst binary combinations of
OTA (3mg/ml) and FB1 (8mg/ml) revealed synergistic interactions using HCA (MMP, MM, NI endpoints)
not detected using MTT or NR. HCA is a highly novel and sensitive tool that could substantially help
determine future regulatory limits, for single and combined toxins present in food, ensuring legislation is based on true risks to human health exposure.
Resumo:
Intake of heterocyclic amines (HCAs, carcinogens produced during cooking of meat/fish, the most abundant being PhIP, DiMeIQx and MeIQx) is influenced by many factors including type/thickness of meat and cooking method/temperature/duration. Thus, assessment of HCA dietary exposure is difficult. Protein adducts of HCAs have been proposed as potential medium-term biomarkers of exposure, e.g. PhIP adducted to serum albumin or haemoglobin. However, evidence is still lacking that HCA adducts are viable biomarkers in humans consuming normal diets. The FoodCAP project, supported by World Cancer Research Fund, developed a highly sensitive mass spectrometric method for hydrolysis, extraction and detection of acid-labile HCAs in blood and assessed their validity as biomarkers of exposure. Multiple acid/alkaline hydrolysis conditions were assessed, followed by liquid-liquid extraction, clean-up by cation-exchange SPE and quantification by UPLC-ESI-MS/ MS. Blood was analysed from volunteers who completed food diaries to estimate HCA intake based on the US National Cancer Institute’s CHARRED database. Standard HCAs were recovered quantitatively from fortified blood. In addition, PhIP/MeIQx adducts bound to albumin and haemoglobin prepared in vitro using a human liver microsome system were also detectable in blood fortified at low ppt concentrations. However, except for one sample (5pg/ml PhIP), acid-labile PhIP, 7,8-DiMeIQx, 4,8-DiMeIQx and MeIQx were not observed above the 2pg/ml limit of detection in plasma (n=35), or in serum, whole blood or purified albumin, even in volunteers with high meat consumption (nominal HCA intake >2µg/day). It is concluded that HCA blood protein adducts are not viable biomarkers of exposure. Untargeted metabolomic analyses may facilitate discovery of suitable markers.
Resumo:
In this paper, our previous work on Principal Component Analysis (PCA) based fault detection method is extended to the dynamic monitoring and detection of loss-of-main in power systems using wide-area synchrophasor measurements. In the previous work, a static PCA model was built and verified to be capable of detecting and extracting system faulty events; however the false alarm rate is high. To address this problem, this paper uses a well-known ‘time lag shift’ method to include dynamic behavior of the PCA model based on the synchronized measurements from Phasor Measurement Units (PMU), which is named as the Dynamic Principal Component Analysis (DPCA). Compared with the static PCA approach as well as the traditional passive mechanisms of loss-of-main detection, the proposed DPCA procedure describes how the synchrophasors are linearly
auto- and cross-correlated, based on conducting the singular value decomposition on the augmented time lagged synchrophasor matrix. Similar to the static PCA method, two statistics, namely T2 and Q with confidence limits are calculated to form intuitive charts for engineers or operators to monitor the loss-of-main situation in real time. The effectiveness of the proposed methodology is evaluated on the loss-of-main monitoring of a real system, where the historic data are recorded from PMUs installed in several locations in the UK/Ireland power system.
Resumo:
We investigate the determinants of US credit union capital-to-assets ratios, before and after the implementation of the current capital adequacy regulatory framework in 2000. Capitalization varies pro-cyclically, and until the financial crisis credit unions classified as adequately capitalized or below followed a faster adjustment path than well capitalized credit unions. This pattern was reversed, however, in the aftermath of the crisis. The introduction of the PCA regulatory regime achieved a reduction in the proportion of credit unions classified as adequately capitalized or below that continued until the onset of the crisis. Since the crisis, the speed of recovery of credit unions in this category following an adverse capitalization shock was sharply reduced.
Resumo:
The androgen receptor is a key transcription factor contributing to the development of all stages of prostate cancer (PCa). In addition, other transcription factors have been associated with poor prognosis in PCa, amongst which c-Myc (MYC) is a well-established oncogene in many other cancers. We have previously reported that the AR promotes glycolysis and anabolic metabolism; many of these metabolic pathways are also MYC-regulated in other cancers. In this study, we report that in PCa cells de novo purine biosynthesis and the subsequent conversion to XMP is tightly regulated by MYC and independent of AR activity. We characterized two enzymes, PAICS and IMPDH2, within the pathway as PCa biomarkers in tissue samples and report increased efficacy of established anti-androgens in combination with a clinically approved IMPDH inhibitor, mycophenolic acid (MPA). Treatment with MPA led to a significant reduction in cellular guanosine triphosphate (GTP) levels accompanied by nucleolar stress and p53 stabilization. In conclusion, targeting purine biosynthesis provides an opportunity to perturb PCa metabolism and enhance tumour suppressive stress responses.
Resumo:
Metabolic changes are a well-described hallmark of cancer and are responses to changes in the activity of diverse oncogenes and tumour suppressors. For example, steroid hormone biosynthesis is intimately associated with changes in lipid metabolism and represents a therapeutic intervention point in the treatment of prostate cancer (PCa). Both prostate gland development and tumorigenesis rely on the activity of a steroid hormone receptor family member, the androgen receptor (AR). Recent studies have sought to define the biological effect of the AR on PCa by defining the whole-genome binding sites and gene networks that are regulated by the AR. These studies have provided the first systematic evidence that the AR influences metabolism and biosynthesis at key regulatory steps within pathways that have also been defined as points of influence for other oncogenes, including c-Myc, p53 and hypoxia-inducible factor 1α, in other cancers. The success of interfering with these pathways in a therapeutic setting will, however, hinge on our ability to manage the concomitant stress and survival responses induced by such treatments and to define appropriate therapeutic windows.
Disseminated tumor cells and their prognostic significance in nonmetastatic prostate cancer patients
Resumo:
Detection of pretreatment disseminated cells (pre-DTC) reflecting its homing to bone marrow (BM) in prostate cancer (PCa) might improve the current model to predict recurrence or survival in men with nonmetastatic disease despite of primary treatment. Thereby, pre-DTC may serve as an early prognostic biomarker. Post-treatment DTCs (post-DTC) finding may supply the clinician with additional predictive information about the possible course of PCa. To assess the prognostic impact of DTCs in BM aspirates sampled before initiation of primary therapy (pre-DTC) and at least 2 years after (post-DTC) to established prognostic factors and survival in patients with PCa. Available BM of 129 long-term follow-up patients with T1-3N0M0 PCa was assessed in addition to 100 BM of those in whom a pretreatment BM was sampled. Patients received either combined therapy [n = 81 (63%)], radiotherapy (RT) with different duration of hormone treatment (HT) or monotherapy with RT or HT alone [n = 48 (37%)] adapted to the criteria of the SPCG-7 trial. Mononuclear cells were deposited on slides according to the cytospin methodology and DTCs were identified by immunocytochemistry using the pancytokeratin antibodies AE1/AE3. The median age of men at diagnosis was 64.5 years (range 49.5-73.4 years). The median long-term follow-up from first BM sampling to last observation was 11 years. Categorized clinically relevant factors in PCa showed only pre-DTC status as the statistically independent parameter for survival in the multivariate analysis. Pre-DTCs homing to BM are significantly associated with clinically relevant outcome independent to the patient's treatment at diagnosis with nonmetastatic PCa.
Resumo:
BACKGROUND: Prostate cancer (PCa) is the most common cancer in men. PCa is strongly age associated; low death rates in surveillance cohorts call into question the widespread use of surgery, which leads to overtreatment and a reduction in quality of life. There is a great need to increase the understanding of tumor characteristics in the context of disease progression.
OBJECTIVE: To perform the first multigenome investigation of PCa through analysis of both autosomal and mitochondrial DNA, and to integrate exome sequencing data, and RNA sequencing and copy-number alteration (CNA) data to investigate how various different tumor characteristics, commonly analyzed separately, are interconnected.
DESIGN, SETTING, AND PARTICIPANTS: Exome sequencing was applied to 64 tumor samples from 55 PCa patients with varying stage and grade. Integrated analysis was performed on a core set of 50 tumors from which exome sequencing, CNA, and RNA sequencing data were available.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Genes, mutated at a significantly higher rate relative to a genomic background, were identified. In addition, mitochondrial and autosomal mutation rates were correlated to CNAs and proliferation, assessed as a cell cycle gene expression signature.
RESULTS AND LIMITATIONS: Genes not previously reported to be significantly mutated in PCa, such as cell division cycle 27 homolog (Saccharomyces cerevisiae) (CDC27), myeloid/lymphoid or mixed-lineage leukemia 3 (MLL3), lysine (K)-specific demethylase 6A (KDM6A), and kinesin family member 5A (KIF5A) were identified. The mutation rate in the mitochondrial genome was 55 times higher than that of the autosomes. Multilevel analysis demonstrated a tight correlation between high reactive-oxygen exposure, chromosomal damage, high proliferation, and in parallel, a transition from multiclonal indolent primary PCa to monoclonal aggressive disease. As we only performed targeted sequence analysis; copy-number neutral rearrangements recently described for PCa were not accounted for.
CONCLUSIONS: The mitochondrial genome displays an elevated mutation rate compared to the autosomal chromosomes. By integrated analysis, we demonstrated that different tumor characteristics are interconnected, providing an increased understanding of PCa etiology.
Resumo:
BACKGROUND: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling.
METHODS: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ(2) tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided.
RESULTS: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts.
CONCLUSIONS: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa.