866 resultados para Ordinary Least Squares Method
Resumo:
A Administração Financeira surge no início do século XIX juntamente com o movimento de consolidação das grandes empresas e a formação dos mercados nacionais americano enquanto que no Brasil os primeiros estudos ocorrem a partir da segunda metade do século XX. Desde entãoo país conseguiu consolidar alguns centros de excelência em pesquisa, formar grupo significativo de pesquisadores seniores e expandir as áreas de pesquisa no campo, contudo, ainda são poucos os trabalhos que buscam retratar as características da produtividade científica em Finanças. Buscando contribuir para a melhor compreensão do comportamento produtivo dessa área a presente pesquisa estuda sua produção científica, materializada na forma de artigos digitais, publicados em 24 conceituados periódicos nacionais classificados nos estratos Qualis/CAPES A2, B1 e B2 da Área de Administração, Ciências Contábeis e Turismo. Para tanto são aplicadas a Lei de Bradford, Lei do Elitismo de Price e Lei de Lotka. Pela Lei de Bradford são identificadas três zonas de produtividade sendo o núcleo formado por três revistas, estando uma delas classificada no estrato Qualis/CAPES B2, o que evidencia a limitação de um recorte tendo como único critério a classificação Qualis/CAPES. Para a Lei do Elitismo de Price, seja pela contagem direta ou completa, não identificamos comportamento de uma elite semelhante ao apontado pela teoria e que conta com grande número de autores com apenas uma publicação.Aplicando-se o modelo do Poder Inverso Generalizado, calculado por Mínimos Quadrados Ordinários (MQO), verificamos que produtividade dos pesquisadores, quando feita pela contagem direta, se adequa àquela definida pela Lei de Lotka ao nível de α = 0,01 de significância, contudo, pela contagem completa não podemos confirmar a hipótese de homogeneidade das distribuições, além do fato de que nas duas contagens a produtividade analisada pelo parâmetro n é maior que 2 e, portanto, a produtividade do pesquisadores de finanças é menor que a defendida pela teoria.
Resumo:
Correlation and regression are two of the statistical procedures most widely used by optometrists. However, these tests are often misused or interpreted incorrectly, leading to erroneous conclusions from clinical experiments. This review examines the major statistical tests concerned with correlation and regression that are most likely to arise in clinical investigations in optometry. First, the use, interpretation and limitations of Pearson's product moment correlation coefficient are described. Second, the least squares method of fitting a linear regression to data and for testing how well a regression line fits the data are described. Third, the problems of using linear regression methods in observational studies, if there are errors associated in measuring the independent variable and for predicting a new value of Y for a given X, are discussed. Finally, methods for testing whether a non-linear relationship provides a better fit to the data and for comparing two or more regression lines are considered.
Resumo:
In this paper we investigate whether consideration of store-level heterogeneity in marketing mix effects improves the accuracy of the marketing mix elasticities, fit, and forecasting accuracy of the widely-applied SCAN*PRO model of store sales. Models with continuous and discrete representations of heterogeneity, estimated using hierarchical Bayes (HB) and finite mixture (FM) techniques, respectively, are empirically compared to the original model, which does not account for store-level heterogeneity in marketing mix effects, and is estimated using ordinary least squares (OLS). The empirical comparisons are conducted in two contexts: Dutch store-level scanner data for the shampoo product category, and an extensive simulation experiment. The simulation investigates how between- and within-segment variance in marketing mix effects, error variance, the number of weeks of data, and the number of stores impact the accuracy of marketing mix elasticities, model fit, and forecasting accuracy. Contrary to expectations, accommodating store-level heterogeneity does not improve the accuracy of marketing mix elasticities relative to the homogeneous SCAN*PRO model, suggesting that little may be lost by employing the original homogeneous SCAN*PRO model estimated using ordinary least squares. Improvements in fit and forecasting accuracy are also fairly modest. We pursue an explanation for this result since research in other contexts has shown clear advantages from assuming some type of heterogeneity in market response models. In an Afterthought section, we comment on the controversial nature of our result, distinguishing factors inherent to household-level data and associated models vs. general store-level data and associated models vs. the unique SCAN*PRO model specification.
Resumo:
Grounded in Vroom’s motivational framework of performance, we examine the interactive influence of collective human capital (ability) and aggregated service orientation (motivation) on the cross-level relationship between high-performance work systems (HPWS) and individual-level service quality. Results of hierarchical linear modeling (HLM) revealed that HPWS related to collective human capital and aggregated service orientation, which in turn related to individual-level service quality. Furthermore, both HLM and ordinary least squares regression analyses revealed a cross-level interaction effect of collective human capital and aggregated service orientation such that high levels of collective human capital and aggregated service orientation influence individual-level service quality.
Resumo:
This study presents some quantitative evidence from a number of simulation experiments on the accuracy of the productivitygrowth estimates derived from growthaccounting (GA) and frontier-based methods (namely data envelopment analysis-, corrected ordinary least squares-, and stochastic frontier analysis-based malmquist indices) under various conditions. These include the presence of technical inefficiency, measurement error, misspecification of the production function (for the GA and parametric approaches) and increased input and price volatility from one period to the next. The study finds that the frontier-based methods usually outperform GA, but the overall performance varies by experiment. Parametric approaches generally perform best when there is no functional form misspecification, but their accuracy greatly diminishes otherwise. The results also show that the deterministic approaches perform adequately even under conditions of (modest) measurement error and when measurement error becomes larger, the accuracy of all approaches (including stochastic approaches) deteriorates rapidly, to the point that their estimates could be considered unreliable for policy purposes.
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
We proposed and tested a multilevel model, underpinned by empowerment theory, that examines the processes linking high-performance work systems (HPWS) and performance outcomes at the individual and organizational levels of analyses. Data were obtained from 37 branches of 2 banking institutions in Ghana. Results of hierarchical regression analysis revealed that branch-level HPWS relates to empowerment climate. Additionally, results of hierarchical linear modeling that examined the hypothesized cross-level relationships revealed 3 salient findings. First, experienced HPWS and empowerment climate partially mediate the influence of branch-level HPWS on psychological empowerment. Second, psychological empowerment partially mediates the influence of empowerment climate and experienced HPWS on service performance. Third, service orientation moderates the psychological empowerment-service performance relationship such that the relationship is stronger for those high rather than low in service orientation. Last, ordinary least squares regression results revealed that branch-level HPWS influences branch-level market performance through cross-level and individual-level influences on service performance that emerges at the branch level as aggregated service performance. © 2011 American Psychological Association.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
The kinetic parameters of the pyrolysis of miscanthus and its acid hydrolysis residue (AHR) were determined using thermogravimetric analysis (TGA). The AHR was produced at the University of Limerick by treating miscanthus with 5 wt.% sulphuric acid at 175 °C as representative of a lignocellulosic acid hydrolysis product. For the TGA experiments, 3 to 6 g of sample, milled and sieved to a particle size below 250 μm, were placed in the TGA ceramic crucible. The experiments were carried out under non-isothermal conditions heating the samples from 50 to 900 °C at heating rates of 2.5, 5, 10, 17 and 25 °C/min. The activation energy (EA) of the decomposition process was determined from the TGA data by differential analysis (Friedman) and three isoconversional methods of integral analysis (Kissinger–Akahira–Sunose, Ozawa–Flynn–Wall, Vyazovkin). The activation energy ranged from 129 to 156 kJ/mol for miscanthus and from 200 to 376 kJ/mol for AHR increasing with increasing conversion. The reaction model was selected using the non-linear least squares method and the pre-exponential factor was calculated from the Arrhenius approximation. The results showed that the best fitting reaction model was the third order reaction for both feedstocks. The pre-exponential factor was in the range of 5.6 × 1010 to 3.9 × 10+ 13 min− 1 for miscanthus and 2.1 × 1016 to 7.7 × 1025 min− 1 for AHR.
Resumo:
The research presented in this thesis was developed as part of DIBANET, an EC funded project aiming to develop an energetically self-sustainable process for the production of diesel miscible biofuels (i.e. ethyl levulinate) via acid hydrolysis of selected biomass feedstocks. Three thermal conversion technologies, pyrolysis, gasification and combustion, were evaluated in the present work with the aim of recovering the energy stored in the acid hydrolysis solid residue (AHR). Mainly consisting of lignin and humins, the AHR can contain up to 80% of the energy in the original feedstock. Pyrolysis of AHR proved unsatisfactory, so attention focussed on gasification and combustion with the aim of producing heat and/or power to supply the energy demanded by the ethyl levulinate production process. A thermal processing rig consisting on a Laminar Entrained Flow Reactor (LEFR) equipped with solid and liquid collection and online gas analysis systems was designed and built to explore pyrolysis, gasification and air-blown combustion of AHR. Maximum liquid yield for pyrolysis of AHR was 30wt% with volatile conversion of 80%. Gas yield for AHR gasification was 78wt%, with 8wt% tar yields and conversion of volatiles close to 100%. 90wt% of the AHR was transformed into gas by combustion, with volatile conversions above 90%. 5volO2%-95vol%N2 gasification resulted in a nitrogen diluted, low heating value gas (2MJ/m3). Steam and oxygen-blown gasification of AHR were additionally investigated in a batch gasifier at KTH in Sweden. Steam promoted the formation of hydrogen (25vol%) and methane (14vol%) improving the gas heating value to 10MJ/m3, below the typical for steam gasification due to equipment limitations. Arrhenius kinetic parameters were calculated using data collected with the LEFR to provide reaction rate information for process design and optimisation. Activation energy (EA) and pre-exponential factor (ko in s-1) for pyrolysis (EA=80kJ/mol, lnko=14), gasification (EA=69kJ/mol, lnko=13) and combustion (EA=42kJ/mol, lnko=8) were calculated after linearly fitting the data using the random pore model. Kinetic parameters for pyrolysis and combustion were also determined by dynamic thermogravimetric analysis (TGA), including studies of the original biomass feedstocks for comparison. Results obtained by differential and integral isoconversional methods for activation energy determination were compared. Activation energy calculated by the Vyazovkin method was 103-204kJ/mol for pyrolysis of untreated feedstocks and 185-387kJ/mol for AHRs. Combustion activation energy was 138-163kJ/mol for biomass and 119-158 for AHRs. The non-linear least squares method was used to determine reaction model and pre-exponential factor. Pyrolysis and combustion of biomass were best modelled by a combination of third order reaction and 3 dimensional diffusion models, while AHR decomposed following the third order reaction for pyrolysis and the 3 dimensional diffusion for combustion.
Resumo:
2000 Mathematics Subject Classification: 60J80, 62M05.
Resumo:
An important variant of a key problem for multi-attribute decision making is considered. We study the extension of the pairwise comparison matrix to the case when only partial information is available: for some pairs no comparison is given. It is natural to define the inconsistency of a partially filled matrix as the inconsistency of its best, completely filled completion. We study here the uniqueness problem of the best completion for two weighting methods, the Eigen-vector Method and the Logarithmic Least Squares Method. In both settings we obtain the same simple graph theoretic characterization of the uniqueness. The optimal completion will be unique if and only if the graph associated with the partially defined matrix is connected. Some numerical experiences are discussed at the end of the paper.
Resumo:
A cikk a páros összehasonlításokon alapuló pontozási eljárásokat alkalmazza svájci rendszerű sakk csapatversenyek eredményének meghatározására. Bemutatjuk a nem körmérkőzéses esetben felmerülő kérdéseket, az egyéni és csapatversenyek jellemzőit, valamint a hivatalos lexikografikus rendezések hibáit. Axiomatikus alapokon rangsorolási problémaként modellezzük a bajnokságokat, definícióinkat összekapcsoljuk a pontszám, az általánosított sorösszeg és a legkisebb négyzetek módszerének tulajdonságaival. A javasolt eljárást két sakkcsapat Európa-bajnokság részletes elemzésével illusztráljuk. A végső rangsorok összehasonlítását távolságfüggvények segítségével végezzük el, majd a sokdimenziós skálázás révén ábrázoljuk azokat. A hivatalos sorrendtől való eltérés okait a legkisebb négyzetek módszerének dekompozíciójával tárjuk fel. A sorrendeket három szempont, az előrejelző képesség, a mintailleszkedés és a robusztusság alapján értékeljük, és a legkisebb négyzetek módszerének alkalmas eredménymátrixszal történő használata mellett érvelünk. ____ The paper uses paired comparison-based scoring procedures in order to determine the result of Swiss system chess team tournaments. We present the main challenges of ranking in these tournaments, the features of individual and team competitions as well as the failures of official lexicographical orders. The tournament is represented as a ranking problem, our model is discussed with respect to the properties of the score, generalised row sum and least squares methods. The proposed method is illustrated with a detailed analysis of the two recent chess team European championships. Final rankings are compared through their distances and visualized by multidimensional scaling (MDS). Differences to official ranking are revealed due to the decomposition of least squares method. Rankings are evaluated by prediction accuracy, retrodictive performance, and stability. The paper argues for the use of least squares method with an appropriate generalised results matrix favouring match points.
Resumo:
The paper uses paired comparison-based scoring procedures for ranking the participants of a Swiss system chess team tournament. We present the main challenges of ranking in Swiss system, the features of individual and team competitions as well as the failures of official lexicographical orders. The tournament is represented as a ranking problem, our model is discussed with respect to the properties of the score, generalized row sum and least squares methods. The proposed procedure is illustrated with a detailed analysis of the two recent chess team European championships. Final rankings are compared by their distances and visualized with multidimensional scaling (MDS). Differences to official ranking are revealed by the decomposition of least squares method. Rankings are evaluated by prediction accuracy, retrodictive performance, and stability. The paper argues for the use of least squares method with a results matrix favoring match points.
Resumo:
A special class of preferences, given by a directed acyclic graph, is considered. They are represented by incomplete pairwise comparison matrices as only partial information is available: for some pairs no comparison is given in the graph. A weighting method satisfies the property linear order preservation if it always results in a ranking such that an alternative directly preferred to another does not have a lower rank. We study whether two procedures, the Eigenvector Method and the Logarithmic Least Squares Method meet this axiom. Both weighting methods break linear order preservation, moreover, the ranking according to the Eigenvector Method depends on the incomplete pairwise comparison representation chosen.