963 resultados para Optical spin transfer


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sensitivity of solar irradiance at the surface to the variability of aerosol intensive optical properties is investigated for a site (Alta Floresta) in the southern portion of the Amazon basin using detailed comparisons between measured and modeled irradiances. Apart from aerosol intensive optical properties, specifically single scattering albedo (omega(o lambda)) and asymmetry parameter (g(lambda)), which were assumed constant, all other relevant input to the model were prescribed based on observation. For clean conditions, the differences between observed and modeled irradiances were consistent with instrumental uncertainty. For polluted conditions, the agreement was significantly worse, with a root mean square difference three times larger (23.5 Wm(-2)). Analysis revealed a noteworthy correlation between the irradiance differences (observed minus modeled) and the column water vapor (CWV) for polluted conditions. Positive differences occurred mostly in wet conditions, while the differences became more negative as the atmosphere dried. To explore the hypothesis that the irradiance differences might be linked to the modulation of omega(o lambda) and g(lambda) by humidity, AERONET retrievals of aerosol properties and CWV over the same site were analyzed. The results highlight the potential role of humidity in modifying omega(o lambda) and g(lambda) and suggest that to explain the relationship seen between irradiances differences via aerosols properties the focus has to be on humidity-dependent processes that affect particles chemical composition. Undoubtedly, there is a need to better understand the role of humidity in modifying the properties of smoke aerosols in the southern portion of the Amazon basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The absorption threshold in EuTe and EuSe was investigated as a function of applied magnetic field in the Faraday geometry. A well-resolved doublet of sharp dichroic lines was observed when the magnetic field induced ferromagnetic alignment of the spins in the crystal lattice. In contrast, at zero magnetic field only a broad and featureless absorption onset is seen. These results are fully explained in terms of a model of electronic transitions between localized states at the Eu lattice site and a tight-binding conduction band, which incorporates the formation of spin domains. Based on this model, predictions are made concerning the possibility of inducing magnetization of the spin lattices by illuminating the material with circularly polarized light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The magnetic response of the near-band-edge optical properties is studied in EuTe layers. In several magneto-optical experiments, the absorption and emission are described as well as the related Stokes shift. Specifically, we present the first experimental report of the photoluminescence excitation (PLE) spectrum in Faraday configuration. The PLE spectra shows to be related with the absorption spectra through the observation of resonance between the excitation light and the zero-field band-gap. A new emission line appears at 1.6 eV at a moderate magnetic field in the photoluminescence (PL) spectra. Furthermore, we examine the absorption and PL red-shift induced by the magnetic field in the light of the d-f exchange interaction energy involved in these processes. Whereas the absorption red-shift shows a quadratic dependence on the field, the PL red-shift shows a linear dependence which is explained by spin relaxation of the excited state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terbium (Tb) doped LaMgAl(11)O(19) phosphors have been prepared by the combustion of corresponding metal nitrates (oxidizer) and urea (fuel) at furnace temperature as low as 500 C Combustion synthesized powder phosphor was characterized by X-ray diffraction and field emission scanning electron microscopy techniques LaMgAl(11)O(19) doped with trivalent terbium ions emit weakly in blue and orange light region and strongly in green light region when excited by the ultraviolet light of 261 nm Electron Spin Resonance (ESR) studies were carried out to study the defect centres Induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least two defect centres One of the centres (centre I) with principal g-values g(parallel to) = 2 0417 and g(perpendicular to) = 2 0041 is identified as O(2)(-) ion while centre II with an axially symmetric g-tensor with principal values g(parallel to) = 19698 and g(perpendicular to) = 1 9653 is assigned to an F(+) centre (singly ionized oxygen vacancy) An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F centre (oxygen vacancy with two electrons) The F centre and also the F+ centre appear to correlate with the observed high temperature TSL peak in LaMgAl(11)O(19) Tb phosphor (C) 2010 Elsevier Masson SAS All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er(3+) doped Y(2)O(3) phosphor was prepared by the solution combustion method and characterized using powder x-ray diffraction and energy-dispersive analysis of x-ray mapping studies. Room temperature near infrared (NIR) to green up-conversion (UC) emissions in the region 520-580 nm {((2)H(11/2), (4)S(3/2)) -> (4)I(15/2)} and red UC emissions in the region 650-700 nm ((4)F(9/2) -> (4)I(15/2)) of Er(3+) ions have been observed upon direct excitation to the (4)I(11/2) level using similar to 972 nm laser radiation of nanosecond pulses. The possible mechanisms for the UC processes have been discussed on the basis of the energy level scheme, the pump power dependence as well as based on the temporal evolution. The excited state absorption is observed to be the dominant mechanism for the UC process. Y(2)O(3) : Er exhibits one thermally stimulated luminescence (TSL) peak around 367 degrees C. Electron spin resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TSL peak. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least three distinct centres. One of them (centre I) with principal g-values g(parallel to) = 2.0415 and g(perpendicular to) = 2.0056 is identified as O(2)(-) centre while centre II with an isotropic g-factor 2.0096 is assigned to an F(+)-centre (singly ionized oxygen vacancy). Centre III is also assigned to an F(+)-centre with a small g-factor anisotropy (g(parallel to) = 1.974 and g(perpendicular to) = 1.967). Additional defect centres are observed during thermal annealing experiments and one of them appearing around 330 degrees C grows with the annealing temperature. This centre (assigned to an F(+)-centre) seems to originate from an F-centre (oxygen vacancy with two electrons) and the F-centre appears to correlate with the observed TSL peak in Y2O3 : Er phosphor. The trap depth for this peak has been determined to be 0.97 eV from TSL data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical absorption spectra of two samples of grossular have been measured at room temperature. An intense charge transfer band (UVCT) of iron extends to the visible and near infrared region. Some peaks associated to Fe3+ ions in tetrahedral and octahedral positions have been identified and their energy levels were computed. Mn2+ and Fe2+ ions are responsible with some bands and probably these ions occupy dodecahedral positions. No change in the intensity of optical absorption spectra were found after gamma dose, but only the 505 nm band decreases with irradiation. The OH spectra, consisting of OH overtones at 2750nm and asymmetric OH bands in the near infrared region were observed in the two samples. The heat treatment produces Fe2+ -> Fe3+ and Mn2+ -> Mn3+ by oxidation. This last was observed in sample II only. The thermally stimulated luminescence of both grossular samples has been investigated. Due to differences in iron and manganese concentration, not only a large difference has been observed in their optical absorption behavior, but also a striking difference in their thermoluminescent behavior. Actually, it is not clear whether other impurities such as Ti, Na and K that are present in quite different concentration in grossular I and II are also contributing to the thermoluminescenct properties of both samples. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural, spectroscopic and dielectric properties of thulium-doped laser-heated pedestal Ta(2)O(5) as-grown fibres were studied. Undoped samples grow preferentially with a single crystalline monoclinic structure. The fibre with the lowest thulium content (0.1 at%) also shows predominantly a monoclinic phase and no intra-4f(12) Tm(3+) recombination was observed. For sample with the highest thulium amount (1.0 at%), the appearance of a dominant triclinic phase as well as intraionic optical activation was observed. The dependence of photoluminescence on excitation energy allows identification of different site locations of Tm(3+) ions in the lattice. The absence of recombination between the first and the ground-state multiplets as well as the temperature dependence of the observed transitions was justified by an efficient energy transfer between the Tm(3+) ions. Microwave dielectric properties were investigated using the small perturbation theory. At a frequency of 5 GHz, the undoped material exhibits a dielectric permittivity of 21 and for thulium-doped Ta(2)O(5) samples it decreases to 18 for the highest doping concentration. Nevertheless, the dielectric losses maintain a very low value. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We carried out experiments of induced birefringence via two-photon absorption in spin-coated films of the conjugated polymer poly[2-[ethyl-[4-(4-nitro-phenylazo)-phenyl] -amino]-ethane (3-thienyl)ethanoate], PAzT, at 680 and 775 nm. This process allows recording in the bulk because of the spatial confinement of the bireffingence provided by the two-photon absorption. The induced birefringence is associated with molecular reorientation caused by the two-photon induced isomerization of the azochromophores attached to the polymer backbone. In addition, the two-photon absorption spectrum of PAzT was measured to help selecting the excitation wavelength for two-photon absorption induced birefringence. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a scheme for quasi-perfect state transfer in a network of dissipative harmonic oscillators. We consider ideal sender and receiver oscillators connected by a chain of nonideal transmitter oscillators coupled by nearest-neighbour resonances. From the algebraic properties of the dynamical quantities describing the evolution of the network state, we derive a criterion, fixing the coupling strengths between all the oscillators, apart from their natural frequencies, enabling perfect state transfer in the particular case of ideal transmitter oscillators. Our criterion provides an easily manipulated formula enabling perfect state transfer in the special case where the network nonidealities are disregarded. We also extend such a criterion to dissipative networks where the fidelity of the transferred state decreases due to the loss mechanisms. To circumvent almost completely the adverse effect of decoherence, we propose a protocol to achieve quasi-perfect state transfer in nonideal networks. By adjusting the common frequency of the sender and the receiver oscillators to be out of resonance with that of the transmitters, we demonstrate that the sender`s state tunnels to the receiver oscillator by virtually exciting the nonideal transmitter chain. This virtual process makes negligible the decay rate associated with the transmitter line at the expense of delaying the time interval for the state transfer process. Apart from our analytical results, numerical computations are presented to illustrate our protocol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce(0.8)SM(0.2)O(1.9) and CeO(2) nanomaterials were prepared by a solution technique to produce an ultrafine particulate material with high sinterability. In this work, the structural characteristics, the photoluminescent behavior and the ionic conductivity of the synthesized materials are focused. The thermally decomposed material consists of less than 10 nm in diameter nanoparticles. The Raman spectrum of pure CeO(2) consists of a single triple degenerate F(2g) model characteristic of the fluorite-like structure. The full width at half maximum of this band decreases linearly with increasing calcination temperature. The photoluminescence spectra show a broadened emission band assigned to the ligand-to-metal charge-transfer states O -> Ce(4+). The emission spectra of the Ce(0.8)Sm(0.2)O(1.9) specimens present narrow bands arising from the 4G(5/2) -> (6)H(J) transitions (J = 5/2, 7/2, 9/2 and 11/2) of Sm(3+) ion due to the efficient energy transfer from the O -> Ce(4+) transitions to the emitter 4G(5/2) level. The ionic conductivity of sintered specimens shows a significant dependence on density. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Red, blue and green emitting rare earth compounds (RE(3+) = Eu(3+), Gd(3+) and Tb(3+)) containing the benzenetricarboxylate ligands (BTC) [hemimellitic (EMA), trimellitic (TLA) and trimesic (TMA)] were synthesized and characterized by elemental analysis, complexometric titration, X-ray diffraction patterns, thermogravimetric analysis and infrared spectroscopy. The complexes presented the following formula: [RE(EMA)(H(2)O)(2)], [RE(TLA)(H(2)O)(4)] and [RE(TMA)(H(2)O)(G)], except for Tb-TMA compound, which was obtained only as anhydrous. Phosphorescence data of Gd(3+)-(BTC) complexes showed that the triplet states (T) of the BTC(3-) anions have energy higher than the main emitting states of the Eu(3+) ((5)D(0)) and Tb(3+) ((5)D(4)), indicating that BTC ligands can act as intramolecular energy donors for these metal ions. The high values of experimental intensity parameters (Omega(2)) of Eu(3+)-(BTC) complexes indicate that the europium ion is in a highly polarizable chemical environment. Based on the luminescence spectra, the energy transfer from the T state of BTC ligands to the excited (5)D(0) and (5)D(4) levels of the Eu(3+) and Tb(3+) ions is discussed. The emission quantum efficiencies (eta) of the (5)D(0) emitting level of the Eu(3+) ion have been also determined. In the case of the Tb(3+) ion, the photoluminescence data show the high emission intensity of the characteristic transitions (5)D(4) -> (7)F(J) (J=0-6), indicating that the BTC ligands are good sensitizers. The RE(3+)-(BTC) complexes act as efficient light conversion molecular devices (LCMDs) and can be used as tricolor luminescent materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoluminescence and electroluminescence of PVK films doped with fac-[ClRe(CO)(3)(bpy)], bpy=2,2`-bipyridine, are investigated. Photoluminescence spectra of spin-coated PVK films (lambda(exc)=290 nm) exhibit a broad band centered at 405 nm. As the concentration of dopant increases, the polymer emission is quenched and a band at 555 nm appears (isosbestic point at 475 nm). In OLEDs with ITO/PEDOT:PSS/PVK/butylPBD/Al architecture doped with fac-[ClRe(CO)(3)(bpy)], the polymer host emission is completely quenched even at the lowest concentration of dopant. The electroluminescence spectra of the devices show that there is an efficient energy transfer from the host to the dopant, which exhibits a very intense emission at 580 nm. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly dispersed nanocomposites of polyaniline(PANI) and oxidized single wall carbon nanotubes(SWNTs) have been prepared using dodecylbenzenesulfonic acid as dispersant. The materials were characterized via resonance Raman and electronic absorption spectroscopies. The behavior of the composites as a function of the applied potential was also investigated using in situ Raman electrochemical measurements. The results obtained at E(laser) = 1.17 eV suggest that a charge-transfer process occur between PANI and semiconducting nanotubes for samples where the metallic tubes are previously oxidized. The spectroelectrochemical data show that the presence of SWNTs prevents the oxidation of PANI rings. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Sagnac effect is an important phase coherent effect in optical and atom interferometers where rotations of the interferometer with respect to an inertial reference frame result in a shift in the interference pattern proportional to the rotation rate. Here, we analyze the Sagnac effect in a mesoscopic semiconductor electron interferometer. We include in our analysis the Rashba spin-orbit interactions in the ring. Our results indicate that spin-orbit interactions increase the rotation-induced phase shift. We discuss the potential experimental observability of the Sagnac phase shift in such mesoscopic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we investigate the spectra of band structures and transmittance in magnonic quasicrystals that exhibit the so-called deterministic disorders, specifically, magnetic multilayer systems, which are built obeying to the generalized Fibonacci (only golden mean (GM), silver mean (SM), bronze mean (BM), copper mean (CM) and nickel mean (NM) cases) and k-component Fibonacci substitutional sequences. The theoretical model is based on the Heisenberg Hamiltonian in the exchange regime, together with the powerful transfer matrix method, and taking into account the RPA approximation. The magnetic materials considered are simple cubic ferromagnets. Our main interest in this study is to investigate the effects of quasiperiodicity on the physical properties of the systems mentioned by analyzing the behavior of spin wave propagation through the dispersion and transmission spectra of these structures. Among of these results we detach: (i) the fragmentation of the bulk bands, which in the limit of high generations, become a Cantor set, and the presence of the mig-gap frequency in the spin waves transmission, for generalized Fibonacci sequence, and (ii) the strong dependence of the magnonic band gap with respect to the parameters k, which determines the amount of different magnetic materials are present in quasicrystal, and n, which is the generation number of the sequence k-component Fibonacci. In this last case, we have verified that the system presents a magnonic band gap, whose width and frequency region can be controlled by varying k and n. In the exchange regime, the spin waves propagate with frequency of the order of a few tens of terahertz (THz). Therefore, from a experimental and technological point of view, the magnonic quasicrystals can be used as carriers or processors of informations, and the magnon (the quantum spin wave) is responsible for this transport and processing