949 resultados para Optical Orthogonal Codes
Resumo:
Pristine and molybdenum filled double walled carbon nanotubes (DWNTs) suspended in D2O show excellent ultrafast optical switching properties investigated through femtosecond Z-scan and degenerate pump-probe method using 50 fs pulses with central photon energy of 1.57 eV. For pristine-DWNT, the two photon absorption coefficient, beta and nonlinear refraction coefficient, n2 are 4.9×10−8 cm/W, and 9.5×10−11 cm2/W, respectively, which yield one photon figure of merit, W=133 and two photon figure of merit, T=0.4. The degenerate pump-probe measurements show strong photoinduced bleaching with biexponential decay with time constants ~150 and 600 fs. ©2009 American Institute of Physics
Resumo:
Metallo tetraphenylporphyrins form I : I molecular complexes with 4,6-dinitrobenzofuroxan. The molecular association is described in terms of T-n. interaction with porphyrins functioning as donors. The association constants and thermodynamic parameters have been evaluated using optical absorption and 'H nmr spectral methods. Based on the binding constants, the donor ability of various metalloporphyrins can be arranged in the following order: Pd(I1) > Co(I1) > Cu(I1) > Ni(I1) - VO(1V) - 2H > Zn(l1). Electron paramagnetic resonance studies of the complexes reveal that the IT-complexation results in changes in the electronic structure of the central metal ions which are reflected in the changes in the M-N 5 bonding. The dipolar contribution to the acceptor proton chemical shifts in the CoTPP complex has been partitioned from ring current contributions using the shifts observed in the ZnTPP complex. The shifts, along with the line broadening ratios observed for the CoTPP complex, are used to arrive at the possible solution structures of the complexes.
Resumo:
Chen et al. [1] give a list of quasi-cyclic (2m,m) codes which have the largest minimum distance of any quasi-cyclic code, for various values ofm. We present the weight distribution of these codes. It will be seen that many of the codes found by Chen et al. [1] are equivalent in the sense of having identical weight distributions.
Resumo:
The incidence matrix of a (v, k, λ) configuration is used to construct a (2v, v) and a (2v + 2, v + 1) self-dual code. If the incidence matrix is a circulant, the codes obtained are quasi-cyclic and extended quasi-cyclic, respectively. The weight distributions of some codes of this type are obtained.
Resumo:
Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature.
Resumo:
To develop and compare a set of metrics for calculating tissue thickness in wide-field OCT data.
Resumo:
The wurtzite phase of ZnS nanocrystal has been prepared by annealing in 200-600 degrees C temperature range, its cubic phase of 2-3 nm size. prepared through soft chemical method. Results of isochronal experiments of 2 h at different temperatures indicate that visible transformation to wurtzite from cubic ZnS appears at a temperature of 400 degrees C, which is about three times smaller than that of bulk ZnS phase transition temperature. The phases, nanostructures, and optical absorption characteristics are obtained through X-ray diffraction. transmission electron microscopy, and UV-visible absorption spectroscopy. A stable and green photoluminescence emission peaked at 518 nm is observed from the 600 degrees C annealed samples, under ultraviolet light excitation.
Resumo:
In many instances we find it advantageous to display a quantum optical density matrix as a generalized statistical ensemble of coherent wave fields. The weight functions involved in these constructions turn out to belong to a family of distributions, not always smooth functions. In this paper we investigate this question anew and show how it is related to the problem of expanding an arbitrary state in terms of an overcomplete subfamily of the overcomplete set of coherent states. This provides a relatively transparent derivation of the optical equivalence theorem. An interesting by-product is the discovery of a new class of discrete diagonal representations.
Resumo:
Abstract is not available.
Resumo:
Using the critical percolation conductance method the energy-dependent diffusion coefficient associated with thermally assisted transfer of the R1 line excitation between single Cr3+ ions with strain-induced randomness has been calculated in the 4A2 to E(2E) transition energies. For localized states sufficiently far away from the mobility edge the energy transfer is dominated by dipolar interactions, while very close to the mobility edge it is determined by short-range exchange interactions. Using the above energy-dependent diffusion coefficient a macroscopic diffusion equation is solved for the rate of light emission by Cr3+ ion-pair traps to which single-ion excitations are transferred. The dipolar mechanism leads to good agreement with recent measurements of the pair emission rate by Koo et al. (Phys. Rev. Lett., vol.35, p.1669 (1975)) right up to the mobility edge.
Resumo:
A super-secondary structural motif comprising two orthogonally oriented beta-strands connected by short linking segments of <5 residues has been identified from a data set of 65 independent protein crystal structures. Of the 42 examples from 14 proteins, a vast majority have only a single residue as the linking element. Analysis of the conformational angles at the junction reveals that the recently described type VIII beta-turn occurs frequently at the connecting hinge, while the type II beta-turn is also fairly common.
Resumo:
We report the in situ optical transmission change in the complete visible region of the electromagnetic spectrum to asses the kinetics of photo induced interdiffusion in Sb/As2S3 nanomultilayered film. The interdiffusion of Sb into As2S3 matrix results in the formation of Sb-As2S3 ternary solid solutions which is explained by the change in optical band gap, absorption coefficients and Tauc parameter (B-1/2) with evolution of time. The wavelength dependence of the time constants provides a better description of photo induced effects. The time evolution of the absorption coefficients and optical band gap are significantly faster in this process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The role of the compositional modulation at nano-scale dimensions (similar to 2-10 nm) in the enhancement of optical recording parameters in nanomultilayers, which contain Sb as active, optical absorbing and diffusing layers and As2S3 as barrier (matrix) layers was investigated. Comparison was made with single homogeneous layers made of ternary (As2S3)(x)Sb1-x glasses and co-deposited from Sb and As2S3. It was shown that essential increase of the recording efficiency, sensitivity of the bleaching process, broadening of its spectral range occurs due to the stimulated interdiffusion of adjacent components in Sb/As2S3 nanomultilayers with optimized Sb layer thickness.
Resumo:
Molybdenum oxide films (MoO3) were deposited on glass and crystalline silicon substrates by sputtering of molybdenum target under various oxygen partial pressures in the range 8 × 10−5–8 × 10−4 mbar and at a fixed substrate temperature of 473 K employing dc magnetron sputtering technique. The influence of oxygen partial pressure on the composition stoichiometry, chemical binding configuration, crystallographic structure and electrical and optical properties was systematically studied. X-ray photoelectron spectra of the films formed at 8 × 10−5 mbar showed the presence of Mo6+ and Mo5+ oxidation states of MoO3 and MoO3−x. The films deposited at oxygen partial pressure of 2 × 10−4 mbar showed Mo6+ oxidation state indicating the films were nearly stoichiometric. It was also confirmed by the Fourier transform infrared spectroscopic studies. X-ray diffraction studies revealed that the films formed at oxygen partial pressure of 2 × 10−4 mbar showed the presence of (0 k 0) reflections indicated the layered structure of α-phase MoO3. The electrical conductivity of the films decreased from 3.6 × 10−5 to 1.6 × 10−6 Ω−1 cm−1, the optical band gap of the films increased from 2.93 to 3.26 eV and the refractive index increased from 2.02 to 2.13 with the increase of oxygen partial pressure from 8 × 10−5 to 8 × 10−4 mbar, respectively.
Resumo:
Optically clear glasses were fabricated by quenching the melt of CaCO3-Bi2O3-B2O3 (in equimolecular ratio). The amorphous and glassy characteristics of the as-quenched samples were confirmed via the X-ray powder diffraction (XRD) and differential scanning calorimetric (DSC) studies These glasses were found to. have high thermal stability parameter (S). The optical transmission studies carried out in the 200-2500 nm wavelength range confirmed both the as-quenched and heat-treated samples to be transparent between 400 nm and 2500 nm. The glass-plates that were heat-treated just above the glass transition temperature (723 K) for 6 h retained approximate to 60% transparency despite having nano-crystallites (approximate to 50-100 nm) of CaBi2B2O7 (CBBO) as confirmed by both the XRD and transmission electron microscopy (TEM) studies. The dielectric properties and impedance characteristics of the as-quenched and heat-treated (723 K/6 h) samples were studied as a function of frequency at different temperatures. Cole-Cole equation was employed to rationalize the impedance data.