977 resultados para Oceanic mythology.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

8-page pamphlet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

8-page pamphlet bound in hardcover binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenium content of phosphate material from the ocean bottom ranges from 0.2 to 4.7 mg/kg. Phosphorites of various ages from the Atlantic and Pacific Oceans contain 1.0-2.4 mg/kg of selenium, phosphatized coproliths 0.7-1.2 mg/kg, fish bones 0.2-1,4 mg/kg, and bones of marine mammals 0.5-4.7 mg/kg. Recent diatom muds on the shelf of Namibia are considerably enriched in selenium (12.2-13.8 mg/kg) than phosphorites that form within them. Accumulation of selenium in phosphate material on the ocean bottom results from diagenetic reduction, causing it to be precipitated from liquid phase and to concentrate in organic components and sulfides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low temperature alteration of oceanic basement rocks is characterized by net gain of sulfur, which commonly yields low d34S values, suggesting involvement of microbial sulfate reduction. In order to test whether secondary sulfide minerals are consistent with a biogenic source, we apply high precision multiple sulfur isotope analysis to bulk rock sulfide and pyrite isolates from two contrasting types of altered oceanic basement rocks, namely serpentinized peridotites and altered basalts. Samples from two peridotite sites (Iberian Margin and Hess Deep) and from a basalt site on the eastern flank of the Juan de Fuca Ridge yield overlapping d34S values ranging from 0 per mil to -44 per mil. In contrast, sulfides in the basalt site are characterized by relatively low D33S values ranging from -0.06 per mil to 0.04 per mil, compared to those from peridotite sites (0.00 per mil to 0.16 per mil). The observed D33S signal is significant considering the analytical precision of 0.014 per mil (2 sigma). We present a batch reaction model that uses observed d34S and D33S relationships to quantify the effect of closed system processes and constrain the isotope enrichment factor intrinsic to sulfate reduction. The estimated enrichment factors as large as 61 per mil and 53 per mil, for peridotite and basalt sites respectively, suggest the involvement of microbial sulfate reduction. The relatively high D33S values in the peridotite sites are due to sulfate reduction in a closed system environment, whereas negative D33S values in the basalt site reflect open system sulfate reduction. A larger extent of sulfate reduction during alteration of peridotite to serpentinite is consistent with its higher H2 production capacity compared to basalt alteration, and further supports in-situ microbial sulfate reduction coupled with H2 production during serpentinization reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SIMS analyses have been carried out on clinopyroxenes, plagioclases and amphiboles of six gabbroic samples from Holes 921-924 of the Ocean Drilling Program Leg 153 sited in the MARK area of the Mid-Atlantic Ridge at the ridge-transform intersection, to investigate the rare earth, trace and volatile element distribution in the lower ocean crust during igneous crystallization and higher grade metamorphic conditions. The metagabbros underwent granulite to subgreenschist facies conditions through three main tectono-metamorphic phases: (1) ductile regime (750 < T < 1000 °C and P = 0.3 GPa); (2) transitional regime (600 < T < 700 °C and P = 0.2 GPa); (3) brittle regime (350 < T < 600 °C and P < 0.2 GPa). Igneous clinopyroxenes show Cl-chondrite normalized patterns depleted in LREE, and nearly flat for HREE. The rare earth and trace element distributions in igneous clinopyroxenes and plagioclases indicate that these minerals act as REE reservoirs, and comprise the main contribution to the overall rock content. The abundances in igneous minerals reflect the degree of fractionation of the parent liquids. In metamorphic clinopyroxenes recrystallized in anhydrous assemblages, the REE and trace elements patterns mimic those of the primary ones. Conversely, clinopyroxerie re-equilibrated in amphibolebearing assemblages shows a significant increase in REE, Ti, Zr, Y and V, a negative Eu anomaly, and slight decreases in Sr and Ba. An overall increase of REE and some trace elements is evident in hydrous assemblages, with preferential partitioning in the amphibole. It shows high Ti (18196-22844 ppm), LREE depleted patterns and LaN/SmN = 0.10-0.33, LaN/YbN = 0.10-0.30. Amphiboles from granoblastic assemblages show homogeneous patterns with no or a positive anomaly for TiN and negative anomalies for SrN and ZrN. Volatiles in amphibole are low, with Cl/F < 1; H2O% is significantly lower than the stoichiometric ratio (1.33-1.53%). The composition of the clinopyroxene and amphibole recrystallized in low-strain domains records evidence of incomplete re-equilibration, and element diffusion and partitioning is in part controlled by the textural site. The possible origins of the fluids involved in the metamorphic recrystallization are discussed: (1) remobilization from igneous amphibole; (2) exsolution from evolved melts; (3) introduction of seawater-derived fluids modified in rock-dominated systems; (4) injection of highly evolved hydrous melts during the metamorphic process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the subduction input flux of nitrogen (N) in altered oceanic crust (AOC) is critical in any attempt to mass-balance N across arc-trench systems on a global or individual-margin basis. We have employed sealed-tube, carrier-gas-based methods to examine the N concentrations and isotopic compositions of AOC. Analyses of 53 AOC samples recovered on DSDP/ODP legs from the North and South Pacific, the North Atlantic, and the Antarctic oceans (with larger numbers of samples from Site 801 outboard of the Mariana trench and Site 1149 outboard of the Izu trench), and 14 composites for the AOC sections at Site 801, give N concentrations of 1.3 to 18.2 ppm and d15N_air of -11.6? to +8.3?, indicating significant N enrichment probably during the early stages of hydrothermal alteration of the oceanic basalts. The N-d15N modeling for samples from Sites 801 and 1149 (n=39) shows that the secondary N may come from (1) the sedimentary N in the intercalated sediments and possibly overlying sediments via fluid-sediment/rock interaction, and (2) degassed mantle N2 in seawater via alteration-related abiotic reduction processes. For all Site 801 samples, weak correlation of N and K2O contents indicates that the siting of N in potassic alteration phases strongly depends on N availability and is possibly influenced by highly heterogeneous temperature and redox conditions during hydrothermal alteration. The upper 470-m AOC recovered by ODP Legs 129 and 185 delivers approximately 800 kg/km N annually into the Mariana margin. If the remaining less-altered oceanic crust (assuming 6.5 km, mostly dikes and gabbros) has MORB-like N of 1.5 ppm, the entire oceanic crust transfers 5100 kg/km N annually into that trench. This N input flux is twice as large as the annual N input of 2500 kg/km in seafloor sediments subducting into the same margin, demonstrating that the N input in oceanic crust, and its isotopic consequences, must be considered in any assessment of convergent margin N flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address two issues in the determination of particulate carbon and nitrogen in suspended matter of aquatic environments. One is the adsorption of dissolved organic matter on filters, leading to overestimate particulate matter. The second is the material loss during filtration due to fragile algal cells breaking up. Examples from both laboratory cultures and natural samples are presented. We recommend using stacked filters in order to estimate thefirst and filtering different volumes of water in order to evaluate the second.