913 resultados para Object naming
Resumo:
There is a perception amongst some of those learning computer programming that the principles of object-oriented programming (where behaviour is often encapsulated across multiple class files) can be difficult to grasp, especially when taught through a traditional, didactic ‘talk-and-chalk’ method or in a lecture-based environment.
We propose a non-traditional teaching method, developed for a government funded teaching training project delivered by Queen’s University, we call it bigCode. In this scenario, learners are provided with many printed, poster-sized fragments of code (in this case either Java or C#). The learners sit on the floor in groups and assemble these fragments into the many classes which make-up an object-oriented program.
Early trials indicate that bigCode is an effective method for teaching object-orientation. The requirement to physically organise the code fragments imitates closely the thought processes of a good software developer when developing object-oriented code.
Furthermore, in addition to teaching the principles involved in object-orientation, bigCode is also an extremely useful technique for teaching learners the organisation and structure of individual classes in Java or C# (as well as the organisation of procedural code). The mechanics of organising fragments of code into complete, correct computer programs give the users first-hand practice of this important skill, and as a result they subsequently find it much easier to develop well-structured code on a computer.
Yet, open questions remain. Is bigCode successful only because we have unknowingly predominantly targeted kinesthetic learners? Is bigCode also an effective teaching approach for other forms of learners, such as visual learners? How scalable is bigCode: in its current form can it be used with large class sizes, or outside the classroom?
Resumo:
The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 and 4.5 μm) time series photometry of the Orion Nebula Cluster plus smaller footprints in 11 other star-forming cores (AFGL 490, NGC 1333, Mon R2, GGD 12-15, NGC 2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC 1396A, and Ceph C). There are ~29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the "standard sample" on which we calculate statistics, consisting of fast cadence data, with epochs roughly twice per day for ~40 days. We also define a "standard sample of members" consisting of all the IR-selected members and X-ray-selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data—the Stetson index, a χ2 fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of six to seven years by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data set; out of members and field objects combined, at most 0.02% may have transient IR excesses.
Resumo:
The modulation of neural activity in visual cortex is thought to be a key mechanism of visual attention. The investigation of attentional modulation in high-level visual areas, however, is hampered by the lack of clear tuning or contrast response functions. In the present functional magnetic resonance imaging study we therefore systematically assessed how small voxel-wise biases in object preference across hundreds of voxels in the lateral occipital complex were affected when attention was directed to objects. We found that the strength of attentional modulation depended on a voxel's object preference in the absence of attention, a pattern indicative of an amplificatory mechanism. Our results show that such attentional modulation effectively increased the mutual information between voxel responses and object identity. Further, these local modulatory effects led to improved information-based object readout at the level of multi-voxel activation patterns and to an increased reproducibility of these patterns across repeated presentations. We conclude that attentional modulation enhances object coding in local and distributed object representations of the lateral occipital complex.
Resumo:
Contemporary studies of spatial and social cognition frequently use human figures as stimuli. The interpretation of such studies may be complicated by spatial compatibility effects that emerge when researchers employ spatial responses, and participants spontaneously code spatial relationships about an observed body. Yet, the nature of these spatial codes – whether they are location- or object-based, and coded from the perspective of the observer or the figure – has not been determined. Here, we investigated this issue by exploring spatial compatibility effects arising for objects held by a visually presented whole-bodied schematic human figure. In three experiments, participants responded to the colour of the object held in the figure’s left or right hand, using left or right key presses. Left-right compatibility effects were found relative to the participant’s egocentric perspective, rather than the figure’s. These effects occurred even when the figure was rotated by 90 degrees to the left or to the right, and the coloured objects were aligned with the participant’s midline. These findings are consistent with spontaneous spatial coding from the participant’s perspective and relative to the normal upright orientation of the body. This evidence for object-based spatial coding implies that the domain general cognitive mechanisms that result in spatial compatibility effects may contribute to certain spatial perspective-taking and social cognition phenomena.
Resumo:
Object categorisation is linked to detection, segregation and recognition. In the visual system, these processes are achieved in the ventral \what"and dorsal \where"pathways [3], with bottom-up feature extractions in areas V1, V2, V4 and IT (what) in parallel with top-down attention from PP via MT to V2 and V1 (where). The latter is steered by object templates in memory, i.e. in prefrontal cortex with a what component in PF46v and a where component in PF46d.
Resumo:
Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture.We show that keypoints, especially those which are stable over larger scale intervals, can provide a hierarchically structured saliency map for FoA and object recognition. In addition, the application of non-classical receptive field inhibition to keypoint detection allows to distinguish contour keypoints from texture (surface) keypoints.
Resumo:
There are roughly two processing systems: (1) very fast gist vision of entire scenes, completely bottom-up and data driven, and (2) Focus-of-Attention (FoA) with sequential screening of specific image regions and objects. The latter system has to be sequential because unnormalised input objects must be matched against normalised templates of canonical object views stored in memory, which involves dynamic routing of features in the visual pathways.
Resumo:
In this paper we present an improved scheme for line and edge detection in cortical area V1, based on responses of simple and complex cells, truly multi-scale with no free parameters. We illustrate the multi-scale representation for visual reconstruction, and show how object segregation can be achieved with coarse-to-finescale groupings. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only, and final categorization on coarse plus fine scales. Processing schemes are discussed in the framework of a complete cortical architecture.
Resumo:
Hypercolumns in area V1 contain frequency- and orientation-selective simple and complex cells for line (bar) and edge coding, plus end-stopped cells for key- point (vertex) detection. A single-scale (single-frequency) mathematical model of single and double end-stopped cells on the basis of Gabor filter responses was developed by Heitger et al. (1992 Vision Research 32 963-981). We developed an improved model by stabilising keypoint detection over neighbouring micro- scales.
Resumo:
Object recognition requires that templates with canonical views are stored in memory. Such templates must somehow be normalised. In this paper we present a novel method for obtaining 2D translation, rotation and size invariance. Cortical simple, complex and end-stopped cells provide multi-scale maps of lines, edges and keypoints. These maps are combined such that objects are characterised. Dynamic routing in neighbouring neural layers allows feature maps of input objects and stored templates to converge. We illustrate the construction of group templates and the invariance method for object categorisation and recognition in the context of a cortical architecture, which can be applied in computer vision.
Resumo:
In this paper we present an improved model for line and edge detection in cortical area V1. This model is based on responses of simple and complex cells, and it is multi-scale with no free parameters. We illustrate the use of the multi-scale line/edge representation in different processes: visual reconstruction or brightness perception, automatic scale selection and object segregation. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only and final categorization on coarse plus fine scales. We also present a multi-scale object and face recognition model. Processing schemes are discussed in the framework of a complete cortical architecture. The fact that brightness perception and object recognition may be based on the same symbolic image representation is an indication that the entire (visual) cortex is involved in consciousness.
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic feature routine, and saliency maps for Focus-of-Attention.
Resumo:
In his introduction, Pinna (2010) quoted one of Wertheimer’s observations: “I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of color. Do I have ‘327’? No. I have sky, house, and trees.” This seems quite remarkable, for Max Wertheimer, together with Kurt Koffka and Wolfgang Koehler, was a pioneer of Gestalt Theory: perceptual organisation was tackled considering grouping rules of line and edge elements in relation to figure-ground segregation, i.e., a meaningful object (the figure) as perceived against a complex background (the ground). At the lowest level – line and edge elements – Wertheimer (1923) himself formulated grouping principles on the basis of proximity, good continuation, convexity, symmetry and, often forgotten, past experience of the observer. Rubin (1921) formulated rules for figure-ground segregation using surroundedness, size and orientation, but also convexity and symmetry. Almost a century of research into Gestalt later, Pinna and Reeves (2006) introduced the notion of figurality, meant to represent the integrated set of properties of visual objects, from the principles of grouping and figure-ground to the colour and volume of objects with shading. Pinna, in 2010, went one important step further and studied perceptual meaning, i.e., the interpretation of complex figures on the basis of past experience of the observer. Re-establishing a link to Wertheimer’s rule about past experience, he formulated five propositions, three definitions and seven properties on the basis of observations made on graphically manipulated patterns. For example, he introduced the illusion of meaning by comics-like elements suggesting wind, therefore inducing a learned interpretation. His last figure shows a regular array of squares but with irregular positions on the right side. This pile of (ir)regular squares can be interpreted as the result of an earthquake which destroyed part of an apartment block. This is much more intuitive, direct and economic than describing the complexity of the array of squares.