982 resultados para OPTIMAL-GROWTH TEMPERATURES
Resumo:
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.
Resumo:
The c-Abl tyrosine kinase and the p53 tumor suppressor protein interact functionally and biochemically in cellular genotoxic stress response pathways and are implicated as downstream mediators of ATM (ataxia-telangiectasia mutated). This fact led us to study genetic interactions in vivo between c-Abl and p53 by examining the phenotype of mice and cells deficient in both proteins. c-Abl-null mice show high neonatal mortality and decreased B lymphocytes, whereas p53-null mice are prone to tumor development. Surprisingly, mice doubly deficient in both c-Abl and p53 are not viable, suggesting that c-Abl and p53 together contribute to an essential function required for normal development. Fibroblasts lacking both c-Abl and p53 were similar to fibroblasts deficient in p53 alone, showing loss of the G1/S cell-cycle checkpoint and similar clonogenic survival after ionizing radiation. Fibroblasts deficient in both c-Abl and p53 show reduced growth in culture, as manifested by reduction in the rate of proliferation, saturation density, and colony formation, compared with fibroblasts lacking p53 alone. This defect could be restored by reconstitution of c-Abl expression. Taken together, these results indicate that the ATM phenotype cannot be explained solely by loss of c-Abl and p53 and that c-Abl contributes to enhanced proliferation of p53-deficient cells. Inhibition of c-Abl function may be a therapeutic strategy to target p53-deficient cells selectively.
Resumo:
Type I and II receptors for the transforming growth factor beta (TGF-beta) are transmembrane serine/threonine kinases that are essential for TGF-beta signaling. However, little is known about their in vivo substrates or signal transduction pathways. To determine the substrate specificity of these kinases, we developed combinatorial peptide libraries synthesized on a hydrophilic matrix that is easily accessible to proteins in aqueous solutions. When we subjected these libraries to phosphorylation by the cAMP-dependent protein kinase, we obtained the optimal peptide sequence RRXS (I/L/V), in perfect agreement with the substrate sequence deduced from mutagenesis and crystal structure analyses. By using the same libraries, we showed that the optimal substrate peptide for both the type I and II TGF-beta receptors was KKKKKK(S/T)XXX. Since the two kinases are thought to play different roles in intracellular signal transduction, it was a surprise to find that they have almost identical substrate specificity. Our method is direct, sensitive, and simple and provides information about the kinase specificity for all the amino acid residues at each position.
Resumo:
Amplification and overexpression of the erbB-2/neu protooncogene are frequently associated with aggressive clinical course of certain human adenocarcinomas, and therefore the encoded surface glycoprotein is considered a candidate target for immunotherapy. We previously generated a series of anti-ErbB-2 monoclonal antibodies (mAbs) that either accelerate or inhibit the tumorigenic growth of erbB-2-transformed murine fibroblasts. The present study extended this observation to a human tumor cell line grown as xenografts in athymic mice and addressed the biochemical differences between the two classes of mAbs. We show that the inhibitory effect is dominant in an antibody mixture, and it depends on antibody bivalency. By using radiolabeled mAbs we found that all of three tumor-inhibitory mAbs became rapidly inaccessible to acid treatment when incubated with tumor cells. However, a tumor-stimulatory mAb remained accessible to extracellular treatments, indicating that it did not undergo endocytosis. In addition, intracellular fragments of the inhibitory mAbs, but not of the stimulatory mAb, were observed. Electron microscopy of colloidal gold-antibody conjugates confirmed the absence of endocytosis of the stimulatory mAb but detected endocytic vesicles containing an inhibitory mAb. We conclude that acceleration of cell growth by ErbB-2 correlates with cell surface localization, whereas inhibition of tumor growth is associated with an intrinsic ability of anti-ErbB-2 mAbs to induce endocytosis. These conclusions are relevant to the selection of optimal mAbs for immunotherapy and may have implications for the mechanism of cellular transformation by an overexpressed erbB-2 gene.
Resumo:
This paper presents an alternative model to deal with the problem of optimal energy consumption minimization of non-isothermal systems with variable inlet and outlet temperatures. The model is based on an implicit temperature ordering and the “transshipment model” proposed by Papoulias and Grossmann (1983). It is supplemented with a set of logical relationships related to the relative position of the inlet temperatures of process streams and the dynamic temperature intervals. In the extreme situation of fixed inlet and outlet temperatures, the model reduces to the “transshipment model”. Several examples with fixed and variable temperatures are presented to illustrate the model's performance.
Resumo:
We demonstrate here that the growth increment variability in the shell of the long-lived bivalve mollusc Arctica islandica can be interpreted as an indicator of marine environmental change in the climatically important North Atlantic shelf seas. Multi-centennial (up to 489-year) chronologies were constructed using five detrending techniques and their characteristics compared. The strength of the common environmental signal expressed in the chronologies was found to be fully comparable with equivalent statistics for tree-ring chronologies. The negative exponential function using truncated increment-width series from which the first thirty years have been removed was chosen as the optimal detrending technique. Chronology indices were compared with the Central England Temperature record and with seawater temperature records from stations close to the study site in the Irish Sea. Statistically significant correlations were found between the chronology indices and (a) mean air temperature for the 14-month period beginning in the January preceding the year of growth, (b) mean seawater temperatures for February-October in the year preceding the year of growth (c) late summer and autumn air temperatures and sea surface temperatures for the year of growth and (d) the timing of the autumn decline in SST. Changes through time in the correlations with air and seawater temperatures and changes towards a deeper water origin for the shells in the chronology were interpreted as an indication that shell growth may respond to stratification dynamics.
Resumo:
Warming and acidification of the oceans as a consequence of increasing CO2-concentrations occur at large scales. Numerous studies have shown the impact of single stressors on individual species. However, studies on the combined effect of multiple stressors on a multi-species assemblage, which is ecologically much more realistic and relevant, are still scarce. Therefore, we orthogonally crossed the two factors warming and acidification in mesocosm experiments and studied their single and combined impact on the brown alga Fucus vesiculosus associated with its natural community (epiphytes and mesograzers) in the Baltic Sea in all seasons (from April 2013 to April 2014). We superimposed our treatment factors onto the natural fluctuations of all environmental variables present in the Benthocosms in so-called delta-treatments. Thereby we compared the physiological responses of F. vesiculosus (growth and metabolites) to the single and combined effects of natural Kiel Fjord temperatures and pCO2 conditions with a 5 °C temperature increase and/or pCO2 increase treatment (1100 ppm in the headspace above the mesocosms). Responses were also related to the factor photoperiod which changes over the course of the year. Our results demonstrate complex seasonal pattern. Elevated pCO2 positively affected growth of F. vesiculosus alone and/or interactively with warming. The response direction (additive, synergistic or antagonistic), however, depended on season and daylength. The effects were most obvious when plants were actively growing during spring and early summer. Our study revealed for the first time that it is crucial to always consider the impact of variable environmental conditions throughout all seasons. In summary, our study indicates that in future F. vesiculosus will be more affected by detrimental summer heat-waves than by ocean acidification although the latter consequently enhances growth throughout the year. The mainly negative influence of rising temperatures on the physiology of this keystone macroalga may alter and/or hamper its ecological functions in the shallow coastal ecosystem of the Baltic Sea.
Resumo:
and human capital externalities. Because of such externalities, education investment is too low and fertility is too high. While education subsidies are the conventional means to deal with these problems, we show that the optimal policy also comprises debt even when distortionary taxes are used. The reason is that debt tips the usual trade-off between children's quantity and quality in favor of the latter by increasing the bequest cost of children. The optimal debt-output ratio exceeds 10% for plausible parameterization. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
The development of bone mass during the growing years is an important determinant for risk of osteoporosis in later life. Adequate dietary intake during the growth period may be critical in reaching bone growth potential. The Saskatchewan Bone Mineral Accrual Study (BMAS) is a longitudinal study of bone growth in Caucasian children. We have calculated the times of maximal peak bone mineral content (BMC) velocity to be 14.0 +/- 1.0 y in boys and 12.5 +/- 0.9 y in girls; bone growth is maximal similar to6 mo after peak height velocity. In the 2 y of peak skeletal growth, adolescents accumulate over 25% of adult bone. BMAS data may provide biological data on calcium requirements through application of calcium accrual values to factorial calculations of requirement. As well, our data are beginning to reveal how dietary patterns may influence attainment of bone mass during the adolescent growth spurt. Replacing milk intake by soft drinks appears to be detrimental to bone gain by girls, but not boys. Fruit and vegetable intake, providing alkalinity to bones and/or acting as a marker of a healthy diet, appears to influence BMC in adolescent girls, but not boys. The reason why these dietary factors appear to be more influential in girls than in boys may be that BMAS girls are consuming less than their requirement for calcium, while boys are above their threshold. Specific dietary and nutrient recommendations for adolescents are needed in order to ensure optimal bone growth and consolidation during this important life stage.
Resumo:
The age structure and, stable isotope composition of a stalagmite (CC I) from an upland cave in central-western Italy were studied to investigate regional response to global climatic changes. Four growth phases are constrained by 28 thermal ionization and multi-collector inductively coupled plasma mass spectrometry Th-U ages and reveal intermittent deposition through the period between Marine isotope Stage (MIS) 11 and 3 (similar to380 and similar to43 kyr). Most of the growth took place between similar to380 and similar to280 kyr, a period punctuated briefly by a hiatus in deposition through the glacial maximum of MIS 10. Growth was terminated abruptly at 280 kyr just prior to the MIS 8 glacial maximum. With a present-day chamber temperature of 7.5 degreesC, the timing of hiatuses close to these glacial maxima point to freezing conditions at the time. No deposition was recorded through the entirety of MIS 7 and most of MIS 6, whilst two minor growth phases occurred at similar to141-125 and similar to43 kyr. Growth at 141 kyr indicates temperatures >0 degreesC at a time when MIS 6 ice volumes were close to their maximum. High stable carbon isotope (delta(13)C) values (similar to2.8parts per thousand to +3.1parts per thousand) throughout the stalagmite's growth reflect a persistently low input of biogenic CO2, indicating that the steep, barren and alpine-like recharge area of today ha's been in existence for at least the last similar to380 kyr. During MIS 9, the lowest delta(13)C values occur well after maximum interglacial conditions, suggesting a lag in the development of post-glacial soils in this high-altitude karst. The stable oxygen isotope (delta(18)O) trends match the main structural features of the major climate proxy records (SPECMAP, Vostok and Devils Hole), suggesting that the delta(18)O of CC1 has responded to global-scale climate changes, whilst remarkable similarity exists between CC1 delta(18)O and regional sea-surface temperature reconstructions from North Atlantic core ODP980 and southwest Pacific marine core MD97-2120 through the most detailed part of the CC1 record, MIS 9-8. The results suggest that CC1 and other stalagmites from the cave have the potential to capture a long record of regional temperature trends, particularly in regards to the relative severity of Pleistocene glacial stages. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The effect of soil puddling on growth of lowland rice (Oryza sativa) and post-rice mungbean (Vigna radiata) was investigated using mini rice beds under controlled glasshouse conditions. Each mini rice bed was approximately 1 m(3) in size. Three different soil types were used: a well-drained, permeable loam; a hardsetting, structurally unstable silty loam; and a medium clay. Rice yields were reduced by low puddling compared with high puddling intensity on the loam but not affected on the heavier textured soils (silty loam and clay). Yield of mungbean was reduced on highly puddle, structurally unstable soil, indicating that puddling should be reduced on structurally unstable soils. Under glasshouse condition where crop establishment was not a limiting factor and plant available water in 0.65 m of soil was 100 mm, mungbean yields of >1 t/ha were achieved. However, under conditions where subsoil water reserves were depleted for the production of vegetative biomass during initial optimal growing condition, grain yield remained well below 1 t/ha.
Resumo:
We present Ehrenfest relations for the high temperature stochastic Gross-Pitaevskii equation description of a trapped Bose gas, including the effect of growth noise and the energy cutoff. A condition for neglecting the cutoff terms in the Ehrenfest relations is found which is more stringent than the usual validity condition of the truncated Wigner or classical field method-that all modes are highly occupied. The condition requires a small overlap of the nonlinear interaction term with the lowest energy single particle state of the noncondensate band, and gives a means to constrain dynamical artefacts arising from the energy cutoff in numerical simulations. We apply the formalism to two simple test problems: (i) simulation of the Kohn mode oscillation for a trapped Bose gas at zero temperature, and (ii) computing the equilibrium properties of a finite temperature Bose gas within the classical field method. The examples indicate ways to control the effects of the cutoff, and that there is an optimal choice of plane wave basis for a given cutoff energy. This basis gives the best reproduction of the single particle spectrum, the condensate fraction and the position and momentum densities.
Resumo:
Process optimisation and optimal control of batch and continuous drum granulation processes are studied in this paper. The main focus of the current research has been: (i) construction of optimisation and control relevant, population balance models through the incorporation of moisture content, drum rotation rate and bed depth into the coalescence kernels; (ii) investigation of optimal operational conditions using constrained optimisation techniques; (iii) development of optimal control algorithms based on discretized population balance equations; and (iv) comprehensive simulation studies on optimal control of both batch and continuous granulation processes. The objective of steady state optimisation is to minimise the recycle rate with minimum cost for continuous processes. It has been identified that the drum rotation-rate, bed depth (material charge), and moisture content of solids are practical decision (design) parameters for system optimisation. The objective for the optimal control of batch granulation processes is to maximize the mass of product-sized particles with minimum time and binder consumption. The objective for the optimal control of the continuous process is to drive the process from one steady state to another in a minimum time with minimum binder consumption, which is also known as the state-driving problem. It has been known for some time that the binder spray-rate is the most effective control (manipulative) variable. Although other possible manipulative variables, such as feed flow-rate and additional powder flow-rate have been investigated in the complete research project, only the single input problem with the binder spray rate as the manipulative variable is addressed in the paper to demonstrate the methodology. It can be shown from simulation results that the proposed models are suitable for control and optimisation studies, and the optimisation algorithms connected with either steady state or dynamic models are successful for the determination of optimal operational conditions and dynamic trajectories with good convergence properties. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The leaf growth, dry matter production, and seed yield of 11 wild mungbean ( Vigna radiata ssp. sublobata) accessions of diverse geographic origin were observed under natural and artificial photoperiod temperature conditions, to determine the extent to which genotypic differences could be attributed to adaptive responses to photo-thermal environment. Environments included serial sowings in the field in SE Queensland, complemented by artificial photoperiod extension and controlled-environment growth rooms. Photo-thermal environment influenced leaf growth, total dry matter production ( TDM), and seed yield directly, through effects of ( mainly cool) temperature on growth, and indirectly, through effects on phenology. In terms of direct effects, leaf production, leaf expansion, and leaf area were all sensitive to temperature, with implied base temperatures higher than usually observed in cultivated mungbean ( V. radiata ssp. radiata). Genotypic sensitivity to temperature varied systematically with accession provenance and appeared to be of adaptive significance. In terms of the indirect effects of photo-thermal environment, genotypic and environmental effects on TDM were positively related to changes in total growth duration, and harvest index was negatively related to the period from sowing to flowering, similar to cultivated mungbean. However, seed yield was positively related to the duration of reproductive growth, reflecting the indeterminate growth habit of the wild accessions. As a consequence, the wild accessions are more responsive to favourable environments than typically observed in cultivated mungbean, which is determinate in habit. It is suggested that the introduction of the indeterminate trait into mungbean from the wild subspecies would increase the responsiveness of mungbean to favourable environments, analogous to that of black gram ( V. mungo). Although the wild subspecies appeared more sensitive to cool temperature than cultivated mungbean, it may provide a source of tolerance to the warmer temperatures experienced during the wet season in the tropics.
Resumo:
Sugarcane grown in the Ord River district of Western Australia has lower sucrose content than expected from earlier trials and experience in other irrigated districts. High temperatures have been hypothesised as a possible cause. The effects of high temperature (above 32 degrees C) on growth and carbon partitioning were investigated. A temperature regime of (25-38 degrees C) was compared with (23-33 degrees C). In one experiment, 7-month-old plants of cvv. Q117 and Q158 were subjected to the treatments for 2 months. In another experiment, the plants were allowed to regrow (ratoon) for 6 months. In both experiments, the higher temperature resulted in more, shorter internodes and higher moisture content. Most internodes from plants in the higher temperature treatment had lower sucrose content than internodes from the lower temperature. On a dry mass basis the internodes from the plants in the higher temperature had proportionately more fibre and hexoses but lower sucrose. Combined with an increased number of nodes in a stem of similar or shorter length this would result in higher stalk fibre and lower sucrose content. The data provided evidence that sugarcane partitions less carbon to stored sucrose when grown under high compared with low temperatures. The two cultivars partitioned carbon between soluble (sugars) and insoluble (fibre) fractions to different degrees. These experiments also indicate that the current models describing leaf appearance and perhaps sugarcane growth at temperatures above 32 degrees C, in general, need revision.