971 resultados para OPTICALLY STIMULATED LUMINESCENCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Infrared-to-visible and infrared-to-infrared frequency upconversion processes in Yb3+-Tm3+ doped PbO-GeO2 glasses containing silver nanoparticles (NPs) were investigated. The experiments were performed by exciting the samples with a diode laser operating at 980 nm (in resonance with the Yb3+ transition F-2(7/2)-> F-2(5/2)) and observing the photoluminescence (PL) in the visible and infrared regions due to energy transfer from Yb3+ to Tm3+ ions followed by excited state absorption in the Tm3+ ions. The intensified local field in the vicinity of the metallic NPs contributes for enhancement in the PL intensity at 480 nm (Tm3+ :(1)G(4)-> H-3(6)) and at 800 nm (Tm3+ : H-3(4) -> H-3(6)). (C) 2009 American Institute of Physics. [doi:10.1063/1.3211300]
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The electrical properties of poly p-phenylene sulfide (PPS) samples sandwiched between metallic electrodes are studied as a function of the applied voltage, temperature, time, electrode materials, and sample thickness. Superlinear current-voltage characteristics are observed, which are explained in terms of Schottky effect and space-charge limited currents (SCLC). The conductivity data for variable-range hopping have also been studied, but the calculated values of density of states are approximately one order of magnitude higher than those obtained by SCLC measurements. From thermally stimulated polarization currents we observed a current peak around 80°C that was related with the glass transition temperature of PPS. © 1993.
Resumo:
We have characterized the histamine releasing effects of lectins extracted from Brazilian beans, in comparison to concanavalin A, in hamster cheek pouch cell suspensions containing mast cells. The lectins from Dioclea virgata, Canavalia brasiliensis, and Dioclea rostrata induce histamine release in a similar manner to concanavalin A, but appear to differ in potency and efficacy. The effects depended on the temperature, pH, and metabolic energy, demonstrating the non-cytotoxic nature of the histamine release. It is suggested that the lectins studied act by the same mechanism as concanavalin A (interacting with sugars in the antibodies bound to the mast cells), since high concentrations of glucose inhibit the histamine release. The lectins at high concentrations quench the histamine release. This suppression is reversed by increasing calcium concentration, suggesting that the lectins bind to the calcium that is essential for the secretion, thereby confirming and extending our previous data using the lectin from Dioclea virgata in rat peritoneal mast cells.
Resumo:
The luminescence properties of solid hydrated lanthanide squarates (Ln2(C4O4)3(H2O) x; x = 8 or 13;Ln3+ = Gd, La, Eu, Tb, Pr) are reported for temperatures down to 4.2K. The luminescence of the squarate group is observed for the Gd3+ and La3+ compounds at low temperatures (below 150K). The Pr3+ compound does not show any emission at all, not even at 4.2K. This is ascribed to the quenching of the Pr3+ emission by multiphonon relaxation and/or concentration quenching. The quantum efficiencies of the 5D0 emission of Eu3+ and of the 5D4 emission of Tb3+ in these squarate complexes are strikingly different. Whereas the Tb3+ emission shows a temperature independent quantum efficiency of 50% upon ligand excitation, the Eu3+ emission is strongly quenched, showing a temperature dependent quantum efficiency of 0.8% at 4.2K upon ligand excitation. This quenching is ascribed to the low energy position of the charge-transfer state of Eu3+ in these compounds.