837 resultados para OCCUPATIONAL EXPOSURES
Resumo:
Human biomonitoring is a widely used method in the assessment of occupational exposure to chemical substances and recommended biological limits are published periodically for interpretation and decision-making. However, it is increasingly recognized that a large variability is associated with biological monitoring, making interpretation less efficient than assumed. In order to improve the applicability of biological monitoring, specific factors responsible for this variability should be identified and their contribution quantified. Among these factors, age and sex are easily identifiable, and present knowledge about pharmaceutical chemicals suggests that they play an important role on the toxicokinetics of occupational chemical agents, and therefore on the biological monitoring results.The aim of the present research project was to assess the influence of age and sex on biological indicators corresponding to organic solvents. This has been done experimentally and by toxicokinetic computer simulation. Another purpose was to explore the effect of selected CYP2E1 polymorphisms on the toxicokinetic profile.Age differences were identified by numerical simulations using a general toxicokinetic model from a previous study which was applied to 14 chemicals, representing 21 specific biological entities, with, among others, toluene, phenol, lead and mercury. These models were runn with the modified parameters, indicating in some cases important differences due to age. The expected changes are mostly of the order of 10-20 %, but differences up to 50 % were observed in some cases. These differences appear to depend on the chemical and on the biological entity considered.Sex differences were quantified by controlled human exposures, which were carried out in a 12 m3 exposure chamber for three organic solvents separately: methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1-trichloroethane. The human volunteer groups were composed 12 of ten young men and fifteen young women, the latter subdivided into those with and without hormonal contraceptive. They were exposed during six hours at rest and at half of the threshold limit value. The kinetics of the parent compounds (organic volatiles) and their metabolite(s) were followed in blood, urine and expired air over time. Analyses of the solvent and their metabolites were performed by using headspace gas chromatography, CYP2E1 genotypes by using PCR-based RFLP methods. Experimental data were used to calibrate the toxicokinetic models developed for the three solvents. The results obtained for the different biomarkers of exposure mainly showed an effect on the urinary levels of several biomarkers among women due to the use of hormonal contraceptive, with an increase of about 50 % in the metabolism rate. The results also showed a difference due to the genotype CYP2E1*6, when exposed to methyl ethyl ketone, with a tendency to increase CYP2E1 activity when volunteers were carriers of the mutant allele. Simulations showed that it is possible to use simple toxicokinetic tools in order to predict internal exposure when exposed to organic solvents. Our study suggests that not only physiological differences but also exogenous sex hormones could influence CYP2E1 enzyme activity. The variability among the urinary biological indicators levels gives evidence of an interindividual susceptibility, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
Compartmental and physiologically based toxicokinetic modeling coupled with Monte Carlo simulation were used to quantify the impact of biological variability (physiological, biochemical, and anatomic parameters) on the values of a series of bio-indicators of metal and organic industrial chemical exposures. A variability extent index and the main parameters affecting biological indicators were identified. Results show a large diversity in interindividual variability for the different categories of biological indicators examined. Measurement of the unchanged substance in blood, alveolar air, or urine is much less variable than the measurement of metabolites, both in blood and urine. In most cases, the alveolar flow and cardiac output were identified as the prime parameters determining biological variability, thus suggesting the importance of workload intensity on absorbed dose for inhaled chemicals.
Resumo:
Between 1995 and 2005, the Spanish economy grew at an annual average rate higher than 3,5%. Total employment increased by more than 4.9 millions. Most of this growth was in occupations related with university degrees (more than 890,000, 18% of the total employment increase) and vocational qualifications (more than 855,000, 17.5% of the total employment increase). From a sectoral perspective, the main part of this increase took place in “Real estate, renting and business activities” (K sector in NACE rev.1), “Construction” (F sector) and “Health and social sector” (N sector). This paper analyses this employment growth in an Input-output framework, by means of a structural decomposition analysis (SDA). Two kinds of results have been obtained. From a sectoral perspective we decompose employment growth into Labour requirements change, technical change and demand change. From an occupational perspective, we decompose the employment growth in substitutions effect, labour productivity effect and demand effect. The results show that, in aggregated terms, the main part of this growth is attributable to demand growth, with a small technical improvement. But the results also show that this aggregated behaviour hides important sectoral and occupational variation. The purpose of this paper is to contribute to the ongoing debate over productivity growth and what has been called the “growth model” for the Spanish economy.
Resumo:
The Iowa RCU has developed this selected bibliography of Iowa research in Vocational-Technical Education and related areas. Contract research as well as abstracts of masters theses and doctoral dissertations are included. For the most part, these abstracts have been gleaned from research at the three state universities and Drake University.
Resumo:
This is a supplement to the selected bibliography of Iowa research in Vocational-Technical Education and related areas that the Iowa RCU developed. Contract research as well as abstracts of masters theses and doctoral dissertations are included.
Resumo:
This is supplement no. 2 to the selected bibliography of Iowa research in Vocational-Technical Education and related areas that the Iowa RCU developed. Contract research as well as abstracts of masters theses and doctoral dissertations are included.
Resumo:
Exposure to solar ultraviolet (UV) light is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors. Individual exposure data remain scarce and development of alternative assessment methods is greatly needed. We developed a model simulating human exposure to solar UV. The model predicts the dose and distribution of UV exposure received on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a rendering engine that estimates the solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by each triangle was calculated, taking into account reflected, direct and diffuse radiation, and shading from other body parts. Dosimetric measurements (n = 54) were conducted in field conditions using a foam manikin as surrogate for an exposed individual. Dosimetric results were compared to the model predictions. The model predicted exposure to solar UV adequately. The symmetric mean absolute percentage error was 13%. Half of the predictions were within 17% range of the measurements. This model provides a tool to assess outdoor occupational and recreational UV exposures, without necessitating time-consuming individual dosimetry, with numerous potential uses in skin cancer prevention and research.
Resumo:
The Pesticide Poisoning Surveillance Program within the Division of ADPER & EH monitors, collects, and analyzes pesticide poisonings to determine the extent to which Iowans are being affected by pesticide exposure. The information gathered by this program is disseminated to governmental agencies, the public, and health care professionals. In addition, IDPH is required to submit its findings annually to the Iowa Department of Agriculture and Land Stewardship (IDALS).
Resumo:
A power point made by the IDPH on promoting and protecting the health of Iowans in the workplace.