749 resultados para Nutritional disorders
Resumo:
The artisanal fish preservation methods in Uganda are characterized by extreme operating conditions. Consequently, vital nutritional components diminish in value and quantity which renders fish consumer nutritionally insecure. To establish the magnitude of nutritional loss, duplicate samples of Mukene Rastrineobola argentea were collected from Kiyindi landing site on L. Victoria and Moone landing site on L. Kyoga. Each set of duplicate samples was divided into five portions and kept on ice. For each preservation method a portion was processed into respective products at Food Bioscience and Agri-Business Laboratories aside from the control (fresh) sample. Both preserved and control samples were analysed for nutrient loss at Department of Chemistry, Makerere University using AOAC methods. The composition of fatty acids was determined by methanolysis gas chromatography and Mass spectrophotometry of the resultant methyl esters. The results indicate that nutrients of all preserved samples did not vary significantly from the control except for some fatty acids. The Eicosapentaenoic acid (EPA) in fresh samples declined from 6.72% to 1.08% in deep-fried samples constituting 83.93% nutrient loss. The sum ratio w3:w6 as well as EPA: DHA (Docosahexaenoic) ratio in fried samples also varied significantly (p<0.5) lower than 0.668 and 0.20 for the average of either preservation methods and experts recommended ratio respectively. Further research has been recommended to ascertain the causative factor, since Mukene frying is being promoted in the Great lakes region as alternative method to sun-drying. In conclusion, regular consumers of fried Mukene do not benefit much from the nutritional and health attributes of Omega 3 and 6.
Resumo:
In previous growth experiments with carnivorous southern catfish (Silurus meridionalis), the non-fecal energy lose was positively related to dietary. carbohydrate level. To test whether metabolic energy expenditure accounts for such energy loss, an experiment was performed with southern catfish juveniles (33.2-71.9 g) to study the effect of dietary carbohydrate level on fasting metabolic rate and specific dynamic action (SDA) at 27.5 degreesC. The fasting metabolic rate in this catfish was increased with dietary carbohydrate level, and the specific dynamic action (SDA) coefficient (energy expended on SDA as percent of assimilated energy) was not affected by dietary carbohydrate level. The results suggest that in southern catfish, carbohydrate overfeeding increases metabolic rate to oxidize unwanted assimilated carbohydrate. A discussion on the poor capacity of intermediate metabolism for adapting dietary carbohydrate in carnivorous fish and its possible relationship with facultative component of SDA was also documented in this paper. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccharide, the most effective component of barbary wolfberry fruit, has protective effects on neural cells in hypoxia-ischemia. OBJECTIVE: To investigate the effects of Naotan Pill on glutamate-treated neural cells and on cognitive function in juvenile rats following hypoxia-ischemia. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo study was performed at the Cell Laboratory of Lanzhou University, Lanzhou Institute of Modern Physics of Chinese Academy of Sciences, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from December 2005 to August 2006. The cellular neurobiology, in vitro experiment was conducted at the Institute of Human Anatomy, Histology, Embryology and Neuroscience, School of Basic Medical Sciences, Lanzhou University, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from March 2007 to January 2008. MATERIALS: Naotan Pill, composed of barbary wolfberry fruit, danshen root, grassleaf sweetflag rhizome, and glossy privet fruit, was prepared by Gansu Provincial Rehabilitation Center, China. Rabbit anti-synaptophysin, choline acetyl transferase polyclonal antibody, streptavidin-biotin complex kit and diaminobenzidine kit (Boster, Wuhan, China), as well as glutamate (Hualian, Shanghai, China) were used in this study. METHODS: Cortical neural cells were isolated from neonatal Wistar rats. Neural cell damage models were induced using glutamate, and administered Naotan Pill prior to and following damage. A total of 54 juvenile Wistar rats were equally and randomly assigned into model, Naotan Pill, and sham operation groups. The left common carotid artery was ligated, and then rat models of hypoxic-ischemic injury were assigned to the model and Naotan Pill groups. At 2 days following model induction, rats in the Naotan Pill group were administered Naotan Pill suspension for 21 days. In the model and sham operation groups, rats received an equal volume of saline. MAIN OUTCOME MEASURES: Neural cell morphology was observed using an inverted phase contrast microscope. Survival rate of neural cells was measured by MTT assay. Synaptophysin and choline acetyl transferase expression was observed in the hippocampal CA1 region of juvenile rats using immunohistochemistry. Cognitive function was tested by the Morris water maze. RESULTS: Pathological changes were detected in glutamate-treated neural cells. Neural cell morphology remained normal after Naotan Pill intervention. Absorbance and survival rate of neural cells were significantly greater following Naotan Pill intervention, compared to glutamate-treated neural cells (P < 0.05). Synaptophysin and choline acetyl transferase expression was lowest in the hippocampal CA1 region in the model group and highest in the sham operation group. Significant differences among groups were observed (P < 0.05). Escape latency and swimming distance were significantly longer in the model group compared to the Naotan Pill group (P < 0.05). CONCLUSION: Naotan Pill exhibited protective and repair effects on glutamate-treated neural cells. Naotan Pill upregulated synaptophysin and choline acetyl transferase expression in the hippocampus and improved cognitive function in rats following hypoxia-ischemia.
Fresh pasta enrichment with protein concentrate of tilapia: nutritional and sensory characteristics.
Resumo:
With the goal of developing and characterizing the nutritional and sensory aspects of fresh pasta supplemented with tilapia protein concentrate, four types of pasta were prepared, with inclusion of 0, 10, 20, or 30% of tilapia protein concentrate. Linear effects were observed (P < 0.01) in crude protein, total lipids, ash, carbohydrate, and caloric values; these parameters increased with increasing amounts of tilapia protein concentrate in the pasta. The concentration of Na, P, Ca, Mg, and Zn increased linearly (P < 0.01) in correlation with the increase in protein concentrate content, while Fe content decreased linearly (P < 0.01). In the sensory analysis, texture, overall impression, and the acceptance index demonstrated a cubic regression (P < 0.05), with the inclusion of 20% protein concentrate yielding the best scores. Including up to 30% of tilapia protein concentrate in pasta yields an increased nutritional value, but based on the sensory results, 20% of tilapia protein concentrate in pasta is the recommended maximum level.
Resumo:
Depression is a major medical and social problem. Here we review current body of knowledge on the benefits of exercise as an effective strategy for both the prevention and treatment of this condition. We also analyze the biological pathways involved in such potential benefits, which include changes in neurotrophic factors, oxidative stress and inflammation, telomere length, brain volume and microvessels, neurotransmitters or hormones. We also identify major caveats in this field of research: further studies are needed to identify which are the most appropriate types of exercise interventions (intensity, duration, or frequency) to treat and prevent depression.
Resumo:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas
Resumo:
O selénio (Se) é um micronutriente essencial para o crescimento, desenvolvimento e normal metabolismo dos animais, incluindo o ser humano. É parte integrante de um conjunto de proteínas, as selenoproteínas, com ação antioxidante (protegendo as membranas celulares contra danos dos radicais livres), envolvidas no metabolismo das hormonas da tiróide, na regulação do crescimento e viabilidade celular, nas funções do sistema imune e na reprodução. É introduzido na dieta alimentar (principalmente nas formas de selenometionina e selenocisteína) através das plantas, e de produtos que delas derivam, que assimilam os compostos de selénio presentes no solo. Uma vez que a quantidade de selénio existente nos solos é muito variável, o teor nos alimentos vai depender da sua origem geográfica e, por consequência, a ingestão de selénio varia entre regiões e países. Baixos níveis de selénio estão associados a um declínio na função imune e problemas cognitivos. A deficiência de Se pode também ocasionar problemas musculares e cardiomiopatia. Concentrações reduzidas foram observadas em indíviduos com crises epiléticas e também em casos de pré-eclampsia. A deficiência de selénio pode também desenvolver-se durante a nutrição parenteral. Atualmente, a Dose Diária Recomendada (DDR) é de 55 μg/dia para homens e mulheres adultos e saudáveis. No entanto, existem evidências clínicas de que a ingestão em doses superiores (200-300 μg/dia) pode ter um papel benéfico na prevenção de alguns tipos de cancro e doenças cardiovasculares, na melhoria da resposta imunológica, como neuroprotetor e na fertilidade. O Se desempenha um papel importante na fertilidade masculina, sendo necessário na biossíntese da testosterona e na formação e normal desenvolvimento dos espermatozóides. Em mulheres grávidas o Se, ajuda a prevenir complicações antes e durante o parto e promove o normal desenvolvimento do feto. Como antioxidante o selénio vai combater os danos provocados pelos radicais livres, impedindo que estes exerçam o seu papel prejudicial no organismo. Sendo o sistema imunológico muito suscetível aos danos provocados pelo stress oxidativo, o Se vai exercer efeitos benéficos combatendo os danos por ele causados. Relativamente à capacidade viral, não é possível saber com exatidão qual a quantidade de Se necessária ou concentração ideal no plasma para evitar a ocorrência e desenvolvimento de infeções virais. No entanto, sabe-se que tem um efeito benéfico em pacientes HIV positivos e em indivíduos infetados com o vírus da hepatite (B ou C) contra a progressão para o neoplasia de fígado. Em teoria, a nível cardiovascular, este elemento pode exercer um efeito protetor, embora alguns estudos epidemiológicos não tenham mostrado uma associação clara entre o risco cardiovascular e os níveis selénio. A nível cerebral o Se vai atuar como neuroprotetor, prevenindo o aparecimento de patologias como demência e doença de Alzheimer. Apesar destes indicadores, a maioria dos países europeus, incluindo Portugal, regista uma deficiente ingestão de selénio por parte da população. A suplementação poderá constituir uma opção para garantir os níveis nutricionais recomendados e/ou ser utilizada com o objetivo de prevenir algumas doenças e o envelhecimento. No entanto o selénio pode também ser tóxico se ingerido em excesso, estando a dose máxima admissível fixada em 400 μg/dia. A intoxicação por selénio é chamada selenose e os sintomas comuns incluem: hálito a alho, distúrbios gastrointestinais, perda de cabelo, descamação das unhas, danos neurológicos e fadiga. Assim, atualmente acredita-se que enquanto indivíduos com baixo nível de Se podem obter benefícios da suplementação, esta pode ser prejudicial aqueles com valores normais ou elevados.
Resumo:
To investigate micronutrient intakes and the role of nutritional supplements in the diets of Irish adults aged 18-64 years and pre-school children aged 1-4 years. Analysis is based on data from the National Adult Nutrition Survey (NANS) (n=1274) and the National Pre-School Nutrition Survey (NPNS) (n=500). Food and beverage intakes and nutritional supplement use were recorded using 4-day food records. Nutrients were estimated using WISP© which is based on McCance and Widdowson’s The Composition of Foods, 6thEd and the Irish Food Composition Database. “Meats”, “milk/yoghurt”, “breads”, “fruit/fruit juices” and “breakfast cereals” made important contributions to the intakes of a number of micronutrients. Micronutrient intakes were generally adequate, with the exception of iron (in adult females and 1 year olds) and vitamin D (in all population groups). For iron, zinc, copper and vitamin B6, up to 2% of adults had intakes that exceeded the upper limit (UL). Small proportions of children had intakes of zinc (11%), copper (2%), retinol (4%) and folic acid (5%) exceeding the UL. Nutritional supplements (predominantly multivitamin and/or mineral preparations) were consumed by 28% of adults and 20% of pre-school children. Among users, supplements were effective in reducing the % with inadequate intakes for vitamins A and D (both population groups) and iron (adult females only). Supplement users had a lower prevalence of inadequate intakes for vitamin A and iron compared to non-users. In adults only, users had a lower prevalence of inadequate intakes for magnesium, calcium and zinc, and displayed better compliance with dietary recommendations and lifestyle characteristics compared with non-users. There is poor compliance among women of childbearing age for the recommendation to take a supplement containing 400µg/day of folic acid. These findings are important for the development of nutrition policies and future recommendations for adults and pre-school children in Ireland and the EU.
Resumo:
Coeliac disease is one of the most common food intolerances worldwide and at present the gluten free diet remains the only suitable treatment. A market overview conducted as part of this thesis on nutritional and sensory quality of commercially available gluten free breads and pasta showed that improvements are necessary. Many products show strong off-flavors, poor mouthfeel and reduced shelf-life. Since the life-long avoidance of the cereal protein gluten means a major change to the diet, it is important to also consider the nutritional value of products intending to replace staple foods such as bread or pasta. This thesis addresses this issue by characterising available gluten free cereal and pseudocereal flours to facilitate a better raw material choice. It was observed that especially quinoa, buckwheat and teff are high in essential nutrients, such as protein, minerals and folate. In addition the potential of functional ingredients such as inulin, β-glucan, HPMC and xanthan to improve loaf quality were evaluated. Results show that these ingredients can increase loaf volume and reduce crumb hardness as well as rate of staling but that the effect diverges strongly depending on the bread formulation used. Furthermore, fresh egg pasta formulations based on teff and oat flour were developed. The resulting products were characterised regarding sensory and textural properties as well as in vitro digestibility. Scanning electron and confocal laser scanning microscopy was used throughout the thesis to visualise structural changes occurring during baking and pasta making
Resumo:
Childhood asthma, allergic rhinitis and eczema are complex heterogenic chronic inflammatory allergic disorders which constitute a major burden to children, their families. The prevalence of childhood allergic disorders is increasing worldwide and merely rudimentary understanding exists regarding causality, or the influence of the environment on disease expression. Phase Three of the International Study of Asthma and Allergy in Childhood (ISAAC) reported that Irish adolescents had the 4th highest eczema and rhinoconjunctivitis prevalence and 3rd highest asthma prevalence in the world. There are no ISAAC data pertaining to young Irish children. In 2002, Sturley reported a high prevalence of current asthma in Cork primary school children aged 6-9 years. This thesis comprises of three cross-sectional studies which examined the prevalence of and associations with childhood allergy and a quasi-retrospective cohort study which observed the natural history of allergy from 6-9 until 11-13 years. Although not part of ISAAC, data was attained by parentally completed ISAAC-based questionnaires, using the ISAAC protocol. The prevalence, natural history and risk factors of childhood allergy in Ireland, as described in this thesis, echo those in worldwide allergy research. The variations of prevalence in different populations worldwide and the recurring themes of associations between childhood allergy and microbial exposures, from farming environments and/or gastrointestinal infections, as shown in this thesis, strengthen the mounting evidence that microbial exposure on GALT may hold the key to the mechanisms of allergy development. In this regard, probiotics may be an area of particular interest in allergy modification. Although their effects in relation to allergy, have been investigated now for several years, our knowledge of their diversity, complex functions and interactions with gut microflora, remain rudimentary. Birth cohort studies which include genomic and microbiomic research are recommended in order to examine the underlying mechanisms and the natural course of allergic diseases.
Resumo:
The past two decades have seen substantial gains in our understanding of the complex processes underlying disturbed brain-gut communication in disorders such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Despite a growing understanding of the neurobiology of brain-gut axis dysfunction, there is a relative paucity of investigations into how the various factors involved in dysregulating the brain-gut axis, including stress, immune activation and pain, could impact on fundamental brain processes such as cognitive performance. To this end, we proposed a cognitive neurobiology of brain-gut axis dysfunction and took a novel approach to examine how disturbed brain-gut interactions may manifest as altered cognitive performance in IBS and IBD, both cross-sectionally and prospectively. We have demonstrated that, disorders of the brain-gut axis are characterised by stable deficits in specific cognitive domains. Specifically, patients with IBS exhibit a consistent hippocampal mediated visuospatial memory impairment. In addition we have found evidence to suggest a similar visuospatial impairment in IBD. However, our most consistent finding within this population was that patients with Crohn’s disease exhibit impaired selective attention/ response inhibition on the classic Stroop interference test. These cognitive deficits may serve to perpetuate and sustain brain-gut axis dysfunction. Furthermore, this research has shed light on some of the underlying neurobiological mechanisms that may be mediating cognitive dysfunction in IBS. Our findings may have significant implications for the individual who suffers from a brain-gut axis disorder and may also inform future treatment strategies. Taken together, these findings can be incorporated into existing neurobiological models of brain-gut axis dysfunction, to develop a more comprehensive model accounting for the cognitive-neurobiology of brain-gut axis disorders. This has furthered our understanding of disease pathophysiology and may ultimately aid in both the diagnosis and treatment of these highly prevalent, but poorly understood disorders.
Resumo:
Potatoes (Solanum Tuberosum L.) contain secondary metabolites that may have an impact on human health. The aim of this study was to assess the levels of some of these compounds in a wide range of varieties, including rare, heritage and commercial cultivars. Vitamin C, total carotenoids, phenolics, flavonoids, antioxidant activity and glycoalkaloids were determined, using spectroscopy and chromatography, in the skin and flesh of tubers grown in field trials. Transcript levels of key synthetic enzymes were assessed by qPCR. Accumulation of selected metabolites was higher in the skin than in the flesh of tubers, except ascorbate, which was undetected in the skin. Differences were on average 2.5 to 3-fold for carotenoids, 6-fold for phenolics, 15 to 16-fold for flavonoids, 21-fold for glycoalkaloids and 9 to 10-fold for antioxidant activity. Higher contents of carotenoids were associated with yellow skin or flesh, and higher values of phenolics, flavonoids and antioxidant activity with blue flesh. Variety ‘Burren’ had maxima values of carotenoids in skin and flesh, variety ‘Nicola’ of ascorbate, variety ‘Congo’ of phenolics, flavonoids and antioxidant activity in both tissues, except antioxidant activity in the skin, which was higher in ‘Edzell Blue’. Varieties ‘May Queen’ and ‘International Kidney’ had highest glycoalkaloid content in skin and flesh respectively. The effect of the environment was diverse: year of cultivation was significant for all metabolites, but site of cultivation was not for carotenoids and glycoalkaloids. Levels of expression of phenylalanine ammonia-lyase and chalcone synthase were higher in varieties accumulating high contents of phenolic compounds. However, levels of expression of phytoene synthase and L-galactono-1,4-lactone dehydrogenase were not different between varieties showing contrasting levels of carotenoids and ascorbate respectively. This work will help identify varieties that could be marketed as healthier and the most suitable varieties for extraction of high-value metabolites such as glycoalkaloids.
Resumo:
The molecular and cellular basis of stress pathology remains an important research question in biological science. A better understanding of this may enable the development of novel approaches for the treatment of stress-related disorders. There is a considerable body of scientific evidence suggesting that dietary lipids, phospholipids and omega-3 polyunsaturated fatty acids (n-3 PUFAs), have therapeutic potential for certain psychiatric disorders. Thus, we proposed n-3 PUFAs as a novel strategy for the prevention or amelioration of stress-related disorders. We hypothesised that these compounds would improve behavioural and neurobiological responses and alter gut microbial composition. Furthermore, we proposed a new mechanism of action exerted by n-3 PUFAs using an in vitro model of stress. Lastly, we explored the protective effects of both phospholipids and n-3 PUFAs against neuroinflammation, which has been shown to contribute to the development of stress-related disorders. We provide further evidence that glucocorticoids, inflammation and early-life stress induce vulnerability to psychopathologies. Specifically, we have demonstrated that corticosterone (CORT) alters cortical neuron and astrocyte percentage composition, reduces brain-derived-neuronal factor (BDNF) expression, and induces glucocorticoid receptor (GR) down-regulation in mixed cortical cultures. Interestingly, we found that lipopolysaccharide (LPS) treatment resulted in an over-expression of pro-inflammatory cytokines in cortical astrocyte cultures. Moreover, we demonstrate that early-life stress induces changes to the monoaminergic and immune systems as well as altered neuroendocrine response to stressors later in life. In addition, we found that early-life stress alters the gut microbiota in adulthood. These data demonstrate that n-3 PUFAs can attenuate CORT-induced cellular changes, but not those caused by LPS, within the cerebral cortex. Similarly, phospholipids were unable to reverse LPS-induced inflammation in cultured astrocytes. In addition, this thesis proposes that n-3 PUFAs may prevent the development or lessen the symptoms of mental illnesses, ameliorating anxiety- and depressive-like symptoms as well as cognitive effects, particularly when administered during neurodevelopment. Such effects may be mediated by GR activation as well as by modification of the gut microbiota composition. Taken together, our findings suggest that n-3 PUFAs have therapeutic potential for stress-related disorders and we provide evidence for the mechanisms by which they may exert these effects. These findings contribute to an exciting and growing body of research suggesting that nutritional interventions may have an important role to play in the treatment of stress-related psychiatric conditions.
Resumo:
SCOPUS: ch.b