986 resultados para Numerical Wave Maker, Numerical Wave Tank, CFD
Resumo:
We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.
Resumo:
We derive a nonlinear wave equation for a signal beam which is coupled to a pump beam by two-wave-mixing in a photorefractive crystal. This equation describes self-focusing of the signal beam. We compare two-wave-mixing induced spatial self-focusing of single-pass experiments in a diffusion-type photorefractive crystal and of a photorefractive oscillator using the same crystal. We observe that the nonlinear refractive index change in the oscillator is decreased while increasing resonator losses.
Theoretical and numerical analyses of convective instability in porous media with upward throughflow
Resumo:
Exact analytical solutions have been obtained for a hydrothermal system consisting of a horizontal porous layer with upward throughflow. The boundary conditions considered are constant temperature, constant pressure at the top, and constant vertical temperature gradient, constant Darcy velocity at the bottom of the layer. After deriving the exact analytical solutions, we examine the stability of the solutions using linear stability theory and the Galerkin method. It has been found that the exact solutions for such a hydrothermal system become unstable when the Rayleigh number of the system is equal to or greater than the corresponding critical Rayleigh number. For small and moderate Peclet numbers (Pe less than or equal to 6), an increase in upward throughflow destabilizes the convective flow in the horizontal layer. To confirm these findings, the finite element method with the progressive asymptotic approach procedure is used to compute the convective cells in such a hydrothermal system. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
This paper describes a hybrid numerical method for the design of asymmetric magnetic resonance imaging magnet systems. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. A new type of asymmetric magnet is proposed in this work. The asymmetric MRI magnet allows the diameter spherical imaging volume to be positioned close to one end of the magnet. The main advantages of making the magnet asymmetric include the potential to reduce the perception of claustrophobia for the patient, better access to the patient by attending physicians, and the potential for reduced peripheral nerve stimulation due to the gradient coil configuration. The results highlight that the method can be used to obtain an asymmetric MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1.2 m in length. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 1999 Academic Press.
Resumo:
Groundwater waves, that is, water table fluctuations, are a natural phenomenon in coastal aquifers. They represent an important part of the interaction between the ocean and aquifer and affect the mass exchange between them. This paper presents a new groundwater wave equation. Because it includes the effects of vertical flows and capillarity, the new equation is applicable to both intermediate-depth aquifers and high-frequency waves. Compared with the wave equation derived by Nielsen ed al. [1997], the present equation provides a closer representation of groundwater waves. In particular, it predicts high-frequency water table fluctuations as observed in the field. A validation of the new equation has been carried out by comparing the analytical solutions to it with predictions from direct simulations using the numerical model SUTRA. The effects of various physical parameters and their relative importance are also discussed.
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary's entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429-35) for two-dimensional non-interacting tidal waves. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.
Resumo:
The influence of initial perturbation geometry and material propel-ties on final fold geometry has been investigated using finite-difference (FLAC) and finite-element (MARC) numerical models. Previous studies using these two different codes reported very different folding behaviour although the material properties, boundary conditions and initial perturbation geometries were similar. The current results establish that the discrepancy was not due to the different computer codes but due to the different strain rates employed in the two previous studies (i.e. 10(-6) s(-1) in the FLAC models and 10(-14) s(-1) in the MARC models). As a result, different parts of the elasto-viscous rheological field were bring investigated. For the same material properties, strain rate and boundary conditions, the present results using the two different codes are consistent. A transition in Folding behaviour, from a situation where the geometry of initial perturbation determines final fold shape to a situation where material properties control the final geometry, is produced using both models. This transition takes place with increasing strain rate, decreasing elastic moduli or increasing viscosity (reflecting in each case the increasing influence of the elastic component in the Maxwell elastoviscous rheology). The transition described here is mechanically feasible but is associated with very high stresses in the competent layer (on the order of GPa), which is improbable under natural conditions. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The action of water waves moving over a porous seabed drives a seepage flux into and out of the marine sediments. The volume of fluid exchange per wave cycle may affect the rate of contaminant transport in the sediments. In this paper, the dynamic response of the seabed to ocean waves is treated analytically on the basis of pore-elastic theory applied to a porous seabed. The seabed is modelled as a semi-infinite, isotropic, homogeneous material. Most previous investigations on the wave-seabed interaction problem have assumed quasi-static conditions within the seabed, although dynamic behaviour often occurs in natural environments. Furthermore, wave pressures used in the previous approaches were obtained from conventional ocean wave theories: which are based on the assumption of an impermeable rigid seabed. By introducing a complex wave number, we derive a new wave dispersion equation, which includes the seabed characteristics (such as soil permeability, shear modulus, etc.). Based on the new closed-form analytical solution, the relative differences of the wave-induced seabed response under dynamic and quasi-static conditions are examined. The effects of wave and soil parameters on the seepage flux per wave cycle are also discussed in detail. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Cold rubidium atoms are subjected to an amplitude-modulated far-detuned standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics which can be useful in many atom optics applications as they can be utilized as means for phase space state preparation. We explain the occurrence of distinct peaks in the atomic momentum distribution, analyse them in detail and give evidence for the importance of the system for quantum chaos and decoherence studies.
Resumo:
The occurrence of foliated rock masses is common in mining environment. Methods employing continuum approximation in describing the deformation of such rock masses possess a clear advantage over methods where each rock layer and each inter-layer interface (joint) is explicitly modelled. In devising such a continuum model it is imperative that moment (couple) stresses and internal rotations associated with the bending of the rock layers be properly incorporated in the model formulation. Such an approach will lead to a Cosserat-type theory. In the present model, the behaviour of the intact rock layer is assumed to be linearly elastic and the joints are assumed to be elastic-perfectly plastic. Condition of slip at the interfaces are determined by a Mohr-Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformations. The model is incorporated into the finite element program AFENA and validated against an analytical solution of elementary buckling problems of a layered medium under gravity loading. A design chart suitable for assessing the stability of slopes in foliated rock masses against flexural buckling failure has been developed. The design chart is easy to use and provides a quick estimate of critical loading factors for slopes in foliated rock masses. It is shown that the model based on Euler's buckling theory as proposed by Cavers (Rock Mechanics and Rock Engineering 1981; 14:87-104) substantially overestimates the critical heights for a vertical slope and underestimates the same for sub-vertical slopes. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Field and laboratory observations have shown that a relatively low beach groundwater table enhances beach accretion. These observations have led to the beach dewatering technique (artificially lowering the beach water table) for combating beach erosion. Here we present a process-based numerical model that simulates the interacting wave motion on the beach. coastal groundwater flow, swash sediment transport and beach profile changes. Results of model simulations demonstrate that the model replicates accretionary effects of a low beach water table on beach profile changes and has the potential to become a tool for assessing the effectiveness of beach dewatering systems. (C) 2002 Elsevier Science Ltd. All rights reserved.