936 resultados para Nonparametric discriminant analysis


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent development of in-situ monitoring devices, such as UV-spectrometers, makes the study of short-term stream chemistry variation relevant, especially the study of diurnal cycles, which are not yet fully understood. Our study is based on high-frequency data from an agricultural catchment (Studienlandschaft Schwingbachtal, Germany). We propose a novel approach, i.e. the combination of cluster analysis and Linear Discriminant Analysis, to mine from these data nitrate behavior patterns. As a result, we observe a seasonality of nitrate diurnal cycles, that differs from the most common cycle seasonality described in the literature, i.e. pre-dawn peaks in spring. Our cycles appear in summer and the maximum and minimum shift to a later time in late summer/autumn. This is observed both for water- and energy-limited years, thus potentially stressing the role of evapotranspiration. This concluding hypothesis on the role of evapotranspiration on nitrate stream concentration, which was obtained through data mining, broadens the perspective on the diurnal cycling of stream nitrate concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction. Most studies have described how the weight loss is when different treatments are compared (1-3), while others have also compared the weight loss by sex (4), or have taken into account psychosocial (5) and lifestyle (6, 7) variables. However, no studies have examined the interaction of different variables and the importance of them in the weight loss. Objective. Create a model to discriminate the range of weight loss, determining the importance of each variable. Methods. 89 overweight people (BMI: 25-29.9 kg?m-2), aged from 18 to 50 years, participated in the study. Four types of treatments were randomly assigned: strength training (S), endurance training (E), strength and endurance training (SE), and control group (C). All participants followed a 25% calorie restriction diet. Two multivariate discriminant models including the variables age, sex, height, daily energy expenditure (EE), type of treatment (T), caloric restriction (CR), initial body weight (BW), initial fat mass (FM), initial muscle mass (MM) and initial bone mineral density (BMD) were performed having into account two groups: the first and fourth quartile of the % of weight loss in the first model; the groups above and below the mean of the % of weight loss in the second model. The discriminant models were built using the inclusion method in SPSS allowing us to find a function that could predict the body weight loss range that an overweight person could achieve in a 6 months weight loss intervention.Results. The first discriminant analysis predicted that a combination of the studied variables would discriminate between the two ranges of body weight loss with 81.4% of correct classification. The discriminant function obtained was (Wilks? Lambda=0.475, p=0.003): Discriminant score=-18.266-(0.060xage)- (1.282xsex[0=female;1=male])+(14.701xheight)+(0.002xEE)- (0.006xT[1=S;2=E;3=SE;4=C])-(0.047xCR)- (0.558xBW)+(0.475xFM)+(0.398xMM)+(3.499xBMD) The second discriminant model obtained would discriminate between the two groups of body weight loss with 74.4% of correct classification. The discriminant function obtained was (Wilks? Lambda=0.725, p=0.005): Discriminant score=-5.021-(0.052xage)- (0.543xsex[0=female;1=male])+(3.530xheight)+(0.001xEE)- (0.493xT[1=S;2=E;3=SE;4=C])+(0.003xCR)- (0.365xBW)+(0.368xFM)+(0.296xMM)+(4.034xBMD) Conclusion. The first developed model could predict the percentage of weight loss in the following way: if the discriminant score is close to 1.051, the range of weight loss will be from 7.44 to -4.64% and if it is close to - 1.003, the range will be from -11.03 to -25,00% of the initial body weight. With the second model if the discriminant score is close to 0.623 the body weight loss will be above -7.93% and if it is close to -0.595 will be below - 7.93% of the initial body weight. References. 1. Brochu M, et al. Resistance training does not contribute to improving the metabolic profile after a 6-month weight loss program in overweight and obese postmenopausal women. J Clin Endocrinol Metab. 2009 Sep;94(9):3226-33. 2. Del Corral P, et al. Effect of dietary adherence with or without exercise on weight loss: a mechanistic approach to a global problem. J Clin Endocrinol Metab. 2009 May;94(5):1602-7. 3. Larson-Meyer DE, et al. Caloric Restriction with or without Exercise: The Fitness vs. Fatness Debate. Med Sci Sports Exerc. 2010;42(1):152-9. 4. Hagan RD, et al. The effects of aerobic conditioning and/or caloric restriction in overweight men and women. Medicine & Science in Sports & Exercise. 1986;18(1):87-94. 5. Teixeira PJ, et al. Mediators of weight loss and weight loss maintenance in middle-aged women. Obesity (Silver Spring). 2010 Apr;18(4):725-35. 6. Bautista-Castano I, et al. Variables predictive of adherence to diet and physical activity recommendations in the treatment of obesity and overweight, in a group of Spanish subjects. Int J Obes Relat Metab Disord. 2004 May;28(5):697-705.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes a stress detection system based on fuzzy logic and two physiological signals: Galvanic Skin Response and Heart Rate. Instead of providing a global stress classification, this approach creates an individual stress templates, gathering the behaviour of individuals under situations with different degrees of stress. The proposed method is able to detect stress properly with a rate of 99.5%, being evaluated with a database of 80 individuals. This result improves former approaches in the literature and well-known machine learning techniques like SVM, k-NN, GMM and Linear Discriminant Analysis. Finally, the proposed method is highly suitable for real-time applications

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Las técnicas de cirugía de mínima invasión (CMI) se están consolidando hoy en día como alternativa a la cirugía tradicional, debido a sus numerosos beneficios para los pacientes. Este cambio de paradigma implica que los cirujanos deben aprender una serie de habilidades distintas de aquellas requeridas en cirugía abierta. El entrenamiento y evaluación de estas habilidades se ha convertido en una de las mayores preocupaciones en los programas de formación de cirujanos, debido en gran parte a la presión de una sociedad que exige cirujanos bien preparados y una reducción en el número de errores médicos. Por tanto, se está prestando especial atención a la definición de nuevos programas que permitan el entrenamiento y la evaluación de las habilidades psicomotoras en entornos seguros antes de que los nuevos cirujanos puedan operar sobre pacientes reales. Para tal fin, hospitales y centros de formación están gradualmente incorporando instalaciones de entrenamiento donde los residentes puedan practicar y aprender sin riesgos. Es cada vez más común que estos laboratorios dispongan de simuladores virtuales o simuladores físicos capaces de registrar los movimientos del instrumental de cada residente. Estos simuladores ofrecen una gran variedad de tareas de entrenamiento y evaluación, así como la posibilidad de obtener información objetiva de los ejercicios. Los diferentes estudios de validación llevados a cabo dan muestra de su utilidad; pese a todo, los niveles de evidencia presentados son en muchas ocasiones insuficientes. Lo que es más importante, no existe un consenso claro a la hora de definir qué métricas son más útiles para caracterizar la pericia quirúrgica. El objetivo de esta tesis doctoral es diseñar y validar un marco de trabajo conceptual para la definición y validación de entornos para la evaluación de habilidades en CMI, en base a un modelo en tres fases: pedagógica (tareas y métricas a emplear), tecnológica (tecnologías de adquisición de métricas) y analítica (interpretación de la competencia en base a las métricas). Para tal fin, se describe la implementación práctica de un entorno basado en (1) un sistema de seguimiento de instrumental fundamentado en el análisis del vídeo laparoscópico; y (2) la determinación de la pericia en base a métricas de movimiento del instrumental. Para la fase pedagógica se diseñó e implementó un conjunto de tareas para la evaluación de habilidades psicomotoras básicas, así como una serie de métricas de movimiento. La validación de construcción llevada a cabo sobre ellas mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. Adicionalmente, los resultados obtenidos en la validación de apariencia fueron en general positivos en todos los grupos considerados (noveles, residentes, expertos). Para la fase tecnológica, se introdujo el EVA Tracking System, una solución para el seguimiento del instrumental quirúrgico basado en el análisis del vídeo endoscópico. La precisión del sistema se evaluó a 16,33ppRMS para el seguimiento 2D de la herramienta en la imagen; y a 13mmRMS para el seguimiento espacial de la misma. La validación de construcción con una de las tareas de evaluación mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. La validación concurrente con el TrEndo® Tracking System por su parte presentó valores altos de correlación para 8 de las 9 métricas analizadas. Finalmente, para la fase analítica se comparó el comportamiento de tres clasificadores supervisados a la hora de determinar automáticamente la pericia quirúrgica en base a la información de movimiento del instrumental, basados en aproximaciones lineales (análisis lineal discriminante, LDA), no lineales (máquinas de soporte vectorial, SVM) y difusas (sistemas adaptativos de inferencia neurodifusa, ANFIS). Los resultados muestran que en media SVM presenta un comportamiento ligeramente superior: 78,2% frente a los 71% y 71,7% obtenidos por ANFIS y LDA respectivamente. Sin embargo las diferencias estadísticas medidas entre los tres no fueron demostradas significativas. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la definición de sistemas de evaluación de habilidades para cirugía de mínima invasión, a la utilidad del análisis de vídeo como fuente de información y a la importancia de la información de movimiento de instrumental a la hora de caracterizar la pericia quirúrgica. Basándose en estos cimientos, se han de abrir nuevos campos de investigación que contribuyan a la definición de programas de formación estructurados y objetivos, que puedan garantizar la acreditación de cirujanos sobradamente preparados y promocionen la seguridad del paciente en el quirófano. Abstract Minimally invasive surgery (MIS) techniques have become a standard in many surgical sub-specialties, due to their many benefits for patients. However, this shift in paradigm implies that surgeons must acquire a complete different set of skills than those normally attributed to open surgery. Training and assessment of these skills has become a major concern in surgical learning programmes, especially considering the social demand for better-prepared professionals and for the decrease of medical errors. Therefore, much effort is being put in the definition of structured MIS learning programmes, where practice with real patients in the operating room (OR) can be delayed until the resident can attest for a minimum level of psychomotor competence. To this end, skills’ laboratory settings are being introduced in hospitals and training centres where residents may practice and be assessed on their psychomotor skills. Technological advances in the field of tracking technologies and virtual reality (VR) have enabled the creation of new learning systems such as VR simulators or enhanced box trainers. These systems offer a wide range of tasks, as well as the capability of registering objective data on the trainees’ performance. Validation studies give proof of their usefulness; however, levels of evidence reported are in many cases low. More importantly, there is still no clear consensus on topics such as the optimal metrics that must be used to assess competence, the validity of VR simulation, the portability of tracking technologies into real surgeries (for advanced assessment) or the degree to which the skills measured and obtained in laboratory environments transfer to the OR. The purpose of this PhD is to design and validate a conceptual framework for the definition and validation of MIS assessment environments based on a three-pillared model defining three main stages: pedagogical (tasks and metrics to employ), technological (metric acquisition technologies) and analytical (interpretation of competence based on metrics). To this end, a practical implementation of the framework is presented, focused on (1) a video-based tracking system and (2) the determination of surgical competence based on the laparoscopic instruments’ motionrelated data. The pedagogical stage’s results led to the design and implementation of a set of basic tasks for MIS psychomotor skills’ assessment, as well as the definition of motion analysis parameters (MAPs) to measure performance on said tasks. Validation yielded good construct results for parameters such as time, path length, depth, average speed, average acceleration, economy of area and economy of volume. Additionally, face validation results showed positive acceptance on behalf of the experts, residents and novices. For the technological stage the EVA Tracking System is introduced. EVA provides a solution for tracking laparoscopic instruments from the analysis of the monoscopic video image. Accuracy tests for the system are presented, which yielded an average RMSE of 16.33pp for 2D tracking of the instrument on the image and of 13mm for 3D spatial tracking. A validation experiment was conducted using one of the tasks and the most relevant MAPs. Construct validation showed significant differences for time, path length, depth, average speed, average acceleration, economy of area and economy of volume; especially between novices and residents/experts. More importantly, concurrent validation with the TrEndo® Tracking System presented high correlation values (>0.7) for 8 of the 9 MAPs proposed. Finally, the analytical stage allowed comparing the performance of three different supervised classification strategies in the determination of surgical competence based on motion-related information. The three classifiers were based on linear (linear discriminant analysis, LDA), non-linear (support vector machines, SVM) and fuzzy (adaptive neuro fuzzy inference systems, ANFIS) approaches. Results for SVM show slightly better performance than the other two classifiers: on average, accuracy for LDA, SVM and ANFIS was of 71.7%, 78.2% and 71% respectively. However, when confronted, no statistical significance was found between any of the three. Overall, this PhD corroborates the investigated research hypotheses regarding the definition of MIS assessment systems, the use of endoscopic video analysis as the main source of information and the relevance of motion analysis in the determination of surgical competence. New research fields in the training and assessment of MIS surgeons can be proposed based on these foundations, in order to contribute to the definition of structured and objective learning programmes that guarantee the accreditation of well-prepared professionals and the promotion of patient safety in the OR.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fourier transform infrared (FTIR) spectroscopy was applied to determine the type of surface treatment and dose used on cork stoppers and to predict the friction between stopper and bottleneck. Agglomerated cork stoppers were finished with two different doses and using two surface treatments: P (paraffin and silicone), 15 and 25 mg/stopper, and S (only silicone), 10 and 15 mg/stopper. FTIR spectra were recorded at five points for each stopper by attenuated total reflectance (ATR). Absorbances at 1,010, 2,916, and 2,963 cm -1 were obtained in each spectrum. Discriminant analysis techniques allowed the treatment, and dose applied to each stopper to be identified from the absorbance values. 91.2% success rates were obtained from individual values and 96.0% from the mean values of each stopper. Spectrometric data also allowed treatment homogeneity to be determined on the stopper surface, and a multiple regression model was used to predict the friction index (If = Fe/Fc) (R 2 = 0.93)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Time domain laser reflectance spectroscopy (TDRS) was applied for the first time to evaluate internal fruit quality. This technique, known in medicine-related knowledge areas, has not been used before in agricultural or food research. It allows the simultaneous non-destructive measuring of two optical characteristics of the tissues: light scattering and absorption. Models to measure firmness, sugar & acid contents in kiwifruit, tomato, apple, peach, nectarine and other fruits were built using sequential statistical techniques: principal component analysis, multiple stepwise linear regression, clustering and discriminant analysis. Consistent correlations were established between the two parameters measured with TDRS, i.e. absorption & transport scattering coefficients, with chemical constituents (sugars and acids) and firmness, respectively. Classification models were built to sort fruits into three quality grades, according to their firmness, soluble solids and acidity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mealiness is a textural attribute related to an internal fruit disorder that involves quality loss. It is characterised by the combination of abnormal softness of the fruit and absence of free juiciness in the mouth when eaten by the consumer. Recent research concluded with the development of precise instrumental procedure to measure a scale of mealiness based on the combination of several rheological properties and empirical magnitudes. In this line, time-domain laser reflectance spectroscopy (TDRS) is a medical technology, new in agrofood research, which is capable of obtaining physical and chemical information independently and simultaneously, and this can be of interest to characterise mealiness. Using VIS & NIR lasers as light sources, TDRS was applied in this work to Golden Delicious and Cox apples (n=90), conforming several batches of untreated samples and storage-treated (20°C & 95%RH) to promote the development of mealiness. The collected database was clustered into different groups according to their instrumental test values (Barreiro et al, 1998). The optical coefficients were used as explanatory variables when building discriminant analysis functions for mealiness, achieving a classification score above 80% of correctly identified mealy versus fresh apples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Firmness sensing of selected varieties of apples, pears and avocado fruits has been developed using a nondestructive impact technique. In addition to firmness measurements, postharvest ripeness of apples and pears was monitored by spectrophotometric reflectance measurements, and that of avocadoes by Hunter colour measurements. The data obtained from firmness sensing were analyzed by three analytical procedures: principal component, correlation and regression, and stepwise discriminant analysis. A new software was developed to control the impact test, analyse the data, and sort the fruit into specified classes, based on the criteria obtained from a training procedure. Similar procedures were used to analyse the reflectance and colour data. Both sensing systems were able to classify fruits w i th good accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present research is focused on the application of hyperspectral images for the supervision of quality deterioration in ready to use leafy spinach during storage (Spinacia oleracea). Two sets of samples of packed leafy spinach were considered: (a) a first set of samples was stored at 20 °C (E-20) in order to accelerate the degradation process, and these samples were measured the day of reception in the laboratory and after 2 days of storage; (b) a second set of samples was kept at 10 °C (E-10), and the measurements were taken throughout storage, beginning the day of reception and repeating the acquisition of Images 3, 6 and 9 days later. Twenty leaves per test were analyzed. Hyperspectral images were acquired with a push-broom CCD camera equipped with a spectrograph VNIR (400–1000 nm). Calibration set of spectra was extracted from E-20 samples, containing three classes of degradation: class A (optimal quality), class B and class C (maximum deterioration). Reference average spectra were defined for each class. Three models, computed on the calibration set, with a decreasing degree of complexity were compared, according to their ability for segregating leaves at different quality stages (fresh, with incipient and non-visible symptoms of degradation, and degraded): spectral angle mapper distance (SAM), partial least squares discriminant analysis models (PLS-DA), and a non linear index (Leafy Vegetable Evolution, LEVE) combining five wavelengths were included among the previously selected by CovSel procedure. In sets E-10 and E-20, artificial images of the membership degree according to the distance of each pixel to the reference classes, were computed assigning each pixel to the closest reference class. The three methods were able to show the degradation of the leaves with storage time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La mineralogía de procesos se ha convertido en los últimos años en una herramienta indispensable dentro del ámbito minero-metalúrgico debido fundamentalmente a la emergencia de la Geometalurgia. Esta disciplina en auge, a través de la integración de datos geológicos, mineros y metalúrgicos, proporciona la información necesaria para que el circuito de concentración mineral pueda responder de manera rápida y eficaz a la variabilidad mineralógica inherente a la geología del yacimiento. Para la generación del modelo geometalúrgico, la mineralogía de procesos debe aportar datos cuantitativos sobre los rasgos mineralógicos influyentes en el comportamiento de los minerales y para ello se apoya en el uso de sistemas de análisis mineralógico automatizado. Estos sistemas son capaces de proporcionar gran cantidad de datos mineralógicos de manera rápida y precisa. Sin embargo, cuando se trata de la caracterización de la textura, el mineralogista debe recurrir a descripciones cualitativas basadas en la observación, ya que los sistemas actuales no ofrecen información textural automatizada. Esta tesis doctoral surge precisamente para proporcionar de manera sistemática información textural relevante para los procesos de concentración mineral. La tesis tiene como objetivo principal la identificación y caracterización del tipo de intercrecimiento que un determinado mineral presenta en las partículas minerales, e inicialmente se han tenido en cuenta los siete tipos de intercrecimiento considerados como los más relevantes bajo el punto de vista del comportamiento de las partículas minerales durante flotación, lixiviación y molienda. Para alcanzar este objetivo se ha desarrollado una metodología basada en el diseño y cálculo de una serie de índices numéricos, a los que se ha llamado índices mineralúrgicos, que cumplen una doble función: por un lado, cada índice aporta información relevante para caracterizar los principales rasgos mineralógicos que gobiernan el comportamiento de las partículas minerales a lo largo de los procesos de concentración y por otro lado, estos índices sirven como variables discriminantes para identificar el tipo de intercrecimiento mineral mediante la aplicación de Análisis Discriminante. Dentro del conjunto de índices propuestos en este trabajo, se han considerado algunos índices propuestos por otros autores para su aplicación tanto en el ámbito de la mineralogía como en otros ámbitos de la ciencia de materiales. Se trata del Índice de Contigüidad (Gurland, 1958), Índice de Intercrecimiento (Amstutz y Giger, 1972) e Índice de Coordinación (Jeulin, 1981), adaptados en este caso para el análisis de partículas minerales. El diseño de los índices se ha basado en los principios básicos de la Estereología y el análisis digital de imagen, y su cálculo se ha llevado a cabo aplicando el método de interceptos lineales mediante la programación en MATLAB de varias rutinas. Este método estereológico permite recoger una serie de medidas a partir de las que es posible calcular varios parámetros, tanto estereológicos como geométricos, que han servido de base para calcular los índices mineralúrgicos. Para evaluar la capacidad discriminatoria de los índices mineralúrgicos se han seleccionado 200 casos en los que se puede reconocer de manera clara alguno de los siete tipos de intercrecimiento considerados inicialmente en este trabajo. Para cada uno de estos casos se han calculado los índices mineralúrgicos y se ha aplicado Análisis Discriminante, obteniendo un porcentaje de acierto en la clasificación del 95%. Esta cifra indica que los índices propuestos son discriminadores fiables del tipo de intercrecimiento. Una vez probada la capacidad discriminatoria de los índices, la metodología desarrollada ha sido aplicada para caracterizar una muestra de un concentrado de cobre procedente de la mina Kansanshi (Zambia). Esta caracterización se ha llevado a cabo para obtener la distribución de calcopirita según su tipo de intercrecimiento. La utilidad de esta distribución ha sido analizada bajo diferentes puntos de vista y en todos ellos los índices mineralúrgicos aportan información valiosa para caracterizar el comportamiento mineralúrgico de las partículas minerales. Los resultados derivados tanto del Análisis Discriminante como de la caracterización del concentrado de Kansanshi muestran la fiabilidad, utilidad y versatilidad de la metodología desarrollada, por lo que su integración como herramienta rutinaria en los sistemas actuales de análisis mineralógico pondría a disposición del mineralurgista gran cantidad de información textural complementaria a la información ofrecida por las técnicas actuales de caracterización mineralógica. ABSTRACT Process mineralogy has become in the last decades an essential tool in the mining and metallurgical sphere, especially driven by the emergence of Geometallurgy. This emergent discipline provides required information to efficiently tailor the circuit performance to the mineralogical variability inherent to ore deposits. To contribute to the Geometallurgical model, process mineralogy must provide quantitative data about the main mineralogical features implied in the minerallurgical behaviour of minerals. To address this characterisation, process mineralogy relies on automated systems. These systems are capable of providing a large amount of data quickly and accurately. However, when it comes to the characterisation of texture, mineralogists need to turn to qualitative descriptions based on observation, due to the fact that current systems can not offer quantitative textural information in a routine way. Aiming at the automated characterisation of textural information, this doctoral thesis arises to provide textural information relevant for concentration processes in a systematic way. The main objective of the thesis is the automated identification and characterisation of intergrowth types in mineral particles. Initially, the seven intergrowth types most relevant for flotation, leaching and grinding are considered. To achieve this goal, a methodology has been developed based on the computation of a set of numerical indices, which have been called minerallurgical indices. These indices have been designed with two main purposes: on the one hand, each index provides information to characterise the main mineralogical features which determine particle behaviour during concentration processes and, on the other hand, these indices are used as discriminant variables for identifying the intergrowth type by Discriminant Analysis. Along with the indices developed in this work, three indices proposed by other authors belonging to different fields of materials science have been also considered after being adapted to the analysis of mineral particles. These indices are Contiguity Index (Gurland, 1958), Intergrowth Index (Amstutz and Giger, 1972) and Coordination Index (Jeulin, 1981). The design of minerallurgical indices is based on the fundamental principles of Stereology and Digital Image Analysis. Their computation has been carried out using the linear intercepts method, implemented by means of MATLAB programming. This stereological method provides a set of measurements to obtain several parameters, both stereological and geometric. Based on these parameters, minerallurgical indices have been computed. For the assessment of the discriminant capacity of the developed indices, 200 cases have been selected according to their internal structure, so that one of the seven intergrowth types initially considered in this work can be easily recognised in any of their constituents. Minerallurgical indices have been computed for each case and used as discriminant variables. After applying discriminant analysis, 95% of the cases were correctly classified. This result shows that the proposed indices are reliable identifiers of intergrowth type. Once the discriminant power of the indices has been assessed, the developed methodology has been applied to characterise a copper concentrate sample from the Kansanshi copper mine (Zambia). This characterisation has been carried out to quantify the distribution of chalcopyrite with respect to intergrowth types. Different examples of the application of this distribution have been given to test the usefulness of the method. In all of them, the proposed indices provide valuable information to characterise the minerallurgical behaviour of mineral particles. Results derived from both Discriminant Analysis and the characterisation of the Kansanshi concentrate show the reliability, usefulness and versatility of the developed methodology. Therefore, its integration as a routine tool in current systems of automated mineralogical analysis should make available for minerallurgists a great deal of complementary information to treat the ore more efficiently.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mealiness is a textural attribute related to an internal fruit disorder that involves quality loss. It is characterised by the combination of abnormal softness of the fruit and absence of free juiciness in the mouth when eaten by the consumer. Recent research concluded with the development of precise instrumental procedure to measure a scale of mealiness based on the combination of several rheological properties and empirical magnitudes. In this line, time-domain laser reflectance spectroscopy (TDRS) is a new medical technology, used to characterise the optical properties of tissues, and to locate affected areas like tumours. Among its advantages compared to more traditional spectroscopic techniques, there is the feasibility to asses simultaneously and independently two optical parameters: the absorption of the light inside the irradiated body, and the scattering of the photons across the tissues, at each wavelength, generating two coefficients (µa, absorption coeff.; and µ's, transport scattering coeff.). If it is assumed that they are related respectively to chemical components and to physical properties of the sample, TDRS can be applied to the quantification of chemicals and the measurement of the rheological properties (i.e. mealiness estimation) at the same time. Using VIS & NIR lasers as light sources, TDRS was applied in this work to Golden Delicious and Cox apples (n=90), conforming several batches of untreated samples and storage-treated (20°C & 95%RH) to promote the development of mealiness. The collected database was clustered into different groups according to their instrumental test values (Barreiro et al, 1998). The optical coefficients were used as explanatory variables when building discriminant analysis functions for mealiness, achieving a classification score above 80% of correctly identified mealy versus fresh apples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characterisation of mineral texture has been a major concern for process mineralogists, as liberation characteristics of the ores are intimately related to the mineralogical texture. While a great effort has been done to automatically characterise texture in unbroken ores, the characterisation of textural attributes in mineral particles is usually descriptive. However, the quantitative characterisation of texture in mineral particles is essential to improve and predict the performance of minerallurgical processes (i.e. all the processes involved in the liberation and separation of the mineral of interest) and to achieve a more accurate geometallurgical model. Driven by this necessity of achieving a more complete characterisation of textural attributes in mineral particles, a methodology has been recently developed to automatically characterise the type of intergrowth between mineral phases within particles by means of digital image analysis. In this methodology, a set ofminerallurgical indices has been developed to quantify different mineralogical features and to identify the intergrowth pattern by discriminant analysis. The paper shows the application of the methodology to the textural characterisation of chalcopyrite in the rougher concentrate of the Kansanshi copper mine (Zambia). In this sample, the variety of intergrowth patterns of chalcopyrite with the other minerals has been used to illustrate the methodology. The results obtained show that the method identifies the intergrowth type and provides quantitative information to achieve a complete and detailed mineralogical characterisation. Therefore, the use of this methodology as a routinely tool in automated mineralogy would contribute to a better understanding of the ore behaviour during liberation and separation processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Case-based reasoning (CBR) is a unique tool for the evaluation of possible failure of firms (EOPFOF) for its eases of interpretation and implementation. Ensemble computing, a variation of group decision in society, provides a potential means of improving predictive performance of CBR-based EOPFOF. This research aims to integrate bagging and proportion case-basing with CBR to generate a method of proportion bagging CBR for EOPFOF. Diverse multiple case bases are first produced by multiple case-basing, in which a volume parameter is introduced to control the size of each case base. Then, the classic case retrieval algorithm is implemented to generate diverse member CBR predictors. Majority voting, the most frequently used mechanism in ensemble computing, is finally used to aggregate outputs of member CBR predictors in order to produce final prediction of the CBR ensemble. In an empirical experiment, we statistically validated the results of the CBR ensemble from multiple case bases by comparing them with those of multivariate discriminant analysis, logistic regression, classic CBR, the best member CBR predictor and bagging CBR ensemble. The results from Chinese EOPFOF prior to 3 years indicate that the new CBR ensemble, which significantly improved CBRs predictive ability, outperformed all the comparative methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mulch materials of different origins have been introduced into the agricultural sector in recent years alternatively to the standard polyethylene due to its environmental impact. This study aimed to evaluate the multivariate response of mulch materials over three consecutive years in a processing tomato (Solanum lycopersicon L.) crop in Central Spain. Two biodegradable plastic mulches (BD1, BD2), one oxo-biodegradable material (OB), two types of paper (PP1, PP2), and one barley straw cover (BS) were compared using two control treatments (standard black polyethylene [PE] and manual weed control [MW]). A total of 17 variables relating to yield, fruit quality, and weed control were investigated. Several multivariate statistical techniques were applied, including principal component analysis, cluster analysis, and discriminant analysis. A group of mulch materials comprised of OB and BD2 was found to be comparable to black polyethylene regarding all the variables considered. The weed control variables were found to be an important source of discrimination. The two paper mulches tested did not share the same treatment group membership in any case: PP2 presented a multivariate response more similar to the biodegradable plastics, while PP1 was more similar to BS and MW. Based on our multivariate approach, the materials OB and BD2 can be used as an effective, more environmentally friendly alternative to polyethylene mulches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The initial step in most facial age estimation systems consists of accurately aligning a model to the output of a face detector (e.g. an Active Appearance Model). This fitting process is very expensive in terms of computational resources and prone to get stuck in local minima. This makes it impractical for analysing faces in resource limited computing devices. In this paper we build a face age regressor that is able to work directly on faces cropped using a state-of-the-art face detector. Our procedure uses K nearest neighbours (K-NN) regression with a metric based on a properly tuned Fisher Linear Discriminant Analysis (LDA) projection matrix. On FG-NET we achieve a state-of-the-art Mean Absolute Error (MAE) of 5.72 years with manually aligned faces. Using face images cropped by a face detector we get a MAE of 6.87 years in the same database. Moreover, most of the algorithms presented in the literature have been evaluated on single database experiments and therefore, they report optimistically biased results. In our cross-database experiments we get a MAE of roughly 12 years, which would be the expected performance in a real world application.