981 resultados para Nonlinear portal frame dynamics
Resumo:
We propose a reference model of the kinetics of a viral RNA-dependent RNA polymerase (vRdRp) activities and its regulation during infection of eucaryotic cells. After measles virus infects a cell, mRNAs from all genes immediately start to accumulate linearly over the first 5 to 6 h and then exponentially until approximately 24 h. The change from a linear to an exponential accumulation correlates with de novo synthesis of vRdRp from the incoming template. Expression of the virus nucleoprotein (N) prior to infection shifts the balance in favor of replication. Conversely, inhibition of protein synthesis by cycloheximide favors the latter. The in vivo elongation speed of the viral polymerase is approximately 3 nucleotides/s. A similar profile with fivefold-slower kinetics can be obtained using a recombinant virus expressing a structurally altered polymerase. Finally, virions contain only encapsidated genomic, antigenomic, and 5'-end abortive replication fragment RNAs.
Resumo:
Langerhans cells (LCs) are prominent dendritic cells (DCs) in epithelia, but their role in immunity is poorly defined. To track and discriminate LCs from dermal DCs in vivo, we developed knockin mice expressing enhanced green fluorescent protein (EGFP) under the control of the langerin (CD207) gene. By using vital imaging, we showed that most EGFP(+) LCs were sessile under steady-state conditions, whereas skin inflammation induced LC motility and emigration to lymph nodes (LNs). After skin immunization, dermal DCs arrived in LNs first and colonized areas distinct from slower migrating LCs. LCs reaching LNs under steady-state or inflammatory conditions expressed similar levels of costimulatory molecules. Langerin and EGFP were also expressed on thymic DCs and on blood-derived, CD8alpha(+) DCs from all secondary lymphoid organs. By using a similar knockin strategy involving a diphtheria toxin receptor (DTR) fused to EGFP, we demonstrated that LCs were dispensable for triggering hapten-specific T cell effectors through skin immunization.