956 resultados para Nitrate Reductase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale: There is no effective pharmacological treatment for acute lung injury (ALI). Statins are a potential new therapy because they modify many of the underlying processes important in ALI.

Objectives: To test whether simvastatin improves physiological and biological outcomes in ALI.

Methods: We conducted a randomized, double-blinded, placebo-controlled trial in patients with ALI. Patients received 80 mg simvastatin or placebo until cessation of mechanical ventilation or up to 14 days. Extravascular lung water was measured using thermodilution. Measures of pulmonary and nonpulmonary organ function were assessed daily. Pulmonary and systemic inflammation was assessed by bronchoalveolar lavage fluid and plasma cytokines. Systemic inflammation was also measured by plasma C-reactive protein.

Measurements and Main Results: Sixty patients were recruited. Baseline characteristics, including demographics and severity of illness scores, were similar in both groups. At Day 7, there was no difference in extravascular lung water. By Day 14, the simvastatin-treated group had improvements in nonpulmonary organ dysfunction. Oxygenation and respiratory mechanics improved, although these parameters failed to reach statistical significance. Intensive care unit mortality was 30% in both groups. Simvastatin was well tolerated, with no increase in adverse events. Simvastatin decreased bronchoalveolar lavage IL-8 by 2.5-fold (P = 0.04). Plasma C-reactive protein decreased in both groups but failed to achieve significance in the placebo-treated group.

Conclusions: Treatment with simvastatin appears to be safe and may be associated with an improvement in organ dysfunction in ALI. These clinical effects may be mediated by a reduction in pulmonary and systemic inflammation.




Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological role of steroid 5 alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGF alpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 mu M). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. Endocrine-Related Cancer (2010) 17 757-770

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives This study describes the in-situ gelling of econazole nitrate containing thermosensitive polymers composed of poloxamer 407 and 188 as a novel treatment platform for vaginal candidiasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the efficiency of different agro-environmental strategies used to reduce groundwater pollution by nitrates, transport modelling in soils and groundwater has been carried out on two withdrawal areas in an alluvial plain. In a first time, the agro-environmental model AgriFlux allowed the simulation of water and nitrates fluxes flowing to groundwater. This model was calibrated for each agro-pedological unit of the studied territory. In a second time, the application of the hydrogeological model MODFLOW-MT3D allowed the simulation of nitrate transport in groundwater for the 1980-2004 period. This soil-groundwater coupled modelling has shown that soil nature is the first factor that conditions the vulnerability to nitrates. Thus, nitrate leaching occurs preferentially under sandy soils. Efficiency of different agro-environmental operations for groundwater quality recovery was quantified. The best results are obtained by combination of (1) grassland re-installation on sandy agricultural lots located in near well protection perimeter and (2) fertilization reduction on sandy agricultural lots located in the well alimentation area upstream the near protection perimeter. On other soils, the effect of grassland on groundwater quality improvement is more limited. Nevertheless, the control of nitrate fertilisation remains essential and is justified in both near and far well protection perimeters. Modelling thus allows optimising and priorizing agro-environmental actions in alluvial agricultural zones. [Comte J.-C., Banton O., Kockmann F., Villard A., Creuzot G. (2006), Assessment of groundwater quality recovery strategies using nitrate transport modelling. Application to the Saône alluvial formations (Tournus, Saône-et-Loire), Ingénieries Eau-Agriculture-Territoires, 45, 15-28]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report herein the screening, optimisation and scale up to 100 g of a bioreduction process that employs an in situ product removal (ISPR) technique to overcome the inherent equilibrium problem associated with the coupled-substrate approach to biocatalytic carbonyl reduction. This technique allowed the valuable chiral alcohol, (S)-2-bromo-2-cyclohexen-1-ol, to be isolated in 88% yield and 99.8% ee without the need for further purification, validating the general applicability of this experimental setup.