923 resultados para Nickel-cadmium batteries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research was carried out to assess the trace metal concentration in sediments of ship breaking area in Bangladesh. The study areas were separated into Ship breaking Zone and Reference Site for comparative analysis. Metals like Iron ( Fe) was found at 11932 to 41361.71µg.g-1 in the affected site and 3393.37 µg.g-1 in the control site. Manganese (Mn) varied from 2.32 to 8.25 µg.g-1 in the affected site where as it was recorded as 1.8 µg.g-1 in the control area. Chromium(Cr), Nickel (Ni), Zinc(Zn) and Lead (Pb) were also varied from 22.89 to 86.72 µg.g-1; 23.12 to 48.6;83.78 to 142.85 and 36.78 to 147.83 µg.g-1 respectively in the affected site whereas these were recorded as 19; 3.98; 22.22 and 8.82 µg.g-1 in the control site. Copper (Cu); Cadmium (Cd) and Mercury (Hg) concentration were varied from 21.05 to 39.85; 0.57 to 0.94 and 0.05 to 0.11 µg.g-1 in the affected site and 33.0; 0.115 and 0.01 µg.g-1 in the control site. It may conclude that heavy metal pollution in sediments at ship breaking area of Bangladesh is at alarming stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific high energy and power capacities of rechargeable lithium metal (Li0) batteries are ideally suited to portable devices and are valuable as storage units for intermittent renewable energy sources. Lithium, the lightest and most electropositive metal, would be the optimal anode material for rechargeable batteries if it were not for the fact that such devices fail unexpectedly by short-circuiting via the dendrites that grow across electrodes upon recharging. This phenomenon poses a major safety issue because it triggers a series of adverse events that start with overheating, potentially followed by the thermal decomposition and ultimately the ignition of the organic solvents used in such devices.

In this thesis, we developed experimental platform for monitoring and quantifying the dendrite populations grown in a Li battery prototype upon charging under various conditions. We explored the effects of pulse charging in the kHz range and temperature on dendrite growth, and also on loss capacity into detached “dead” lithium particles.

Simultaneously, we developed a computational framework for understanding the dynamics of dendrite propagation. The coarse-grained Monte Carlo model assisted us in the interpretation of pulsing experiments, whereas MD calculations provided insights into the mechanism of dendrites thermal relaxation. We also developed a computational framework for measuring the dead lithium crystals from the experimental images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho foi estudar a remoção de metais pesados de efluentes sintéticos aquosos através de nanofiltração, com utilização de membrana de poliamida. A membrana utilizada constituída de poliamida apresentou uma boa permeabilidade hidráulica, constatada pela linearidade de fluxo com a variação de pressão de trabalho. Os metais estudados foram cobre, cádmio, zinco, chumbo e níquel com especiação de nitrato e sulfato. O desempenho do sistema foi verificado pela variação dos parâmetros operacionais (pressão e fluxo), associados também com a variação da salinidade e da concentração do metal. Em uma etapa inicial estudou-se a remoção de metais (nitrato e sulfato) isoladamente em uma mesma concentração molar, na pressão de 10 bar, comparando-se as rejeições com e sem agente complexante (EDTA). Em uma segunda etapa, estudou-se o desempenho da membrana, com misturas dos metais (nitrato) e mistura de metais (sulfato), também com e sem agente complexante, os resultados mostraram que a presença de agente complexante melhorou a rejeição dos metais. Nestas misturas estudaram-se os efeitos das concentrações (0,001; 0,0005 e 0,0001mol/L) e das pressões (5; 7; 10 e 12,5 bar) no sistema de remoção, constatou-se que o aumento da concentração e diminuição da pressão afeta a remoção. Em uma terceira etapa, estudou-se a influência da salinidade pela mistura de dois metais de mesma especiação (sulfato), comparando a remoção na pressão de 10 bar. Os resultados atestaram uma rejeição maior que 94 % para todos metais, na pressão de 10 bar, indicando um excelente desempenho e fluxo adequado, daí viabilidade de processo para todas as concentrações testadas. A pertinência do teste se justifica pela adequação do permeado ao atendimento aos padrões ambientais de concentração de metais e confirmam a eficácia do sistema de nanofiltração na remoção de metais pesados

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Widespread pollution by heavy metals generated by various industries has serious adverse effects on human health and the environment. Cadmium is a heavy metal recognised as one of the most hazardous environmental pollutants. It is a non-essential and non-beneficial element to organisms, causing toxicity and other deleterious effects on various components of the aquatic environment. The ability of algal periphyton to concentrate cadmium from fresh water is well known. Moreover, periphyton communities are able to accumulate large amounts of cadmium despite its low concentration in fresh water. Many researchers use algal periphyton as an indicator of water quality in aquatic environments. In the present study, the authors ask two basic questions: Does cadmium accumulate along a food chain consisting of the periphyton community and a grazer species (Physa sp.) under semi-natural conditions provided by artificial streams? If not, which one can better indicate the water quality?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I.

Various studies designed to elucidate the electronic structure of the arsenic donor ligand, o-phenylenebisdimethylarsine (diarsine), have been carried out. The electronic spectrum of diarsine has been measured at 300 and 77˚K. Electronic spectra of the molecular complexes of various substituted organoarsines and phosphines with tetracyanoethylene have been measured and used to estimate the relative ionization potentials of these molecules.

Uv photolysis of arsines in frozen solution (96˚K) has yielded thermally labile, paramagnetic products. These include the molecular cations of the photolyzed compounds. The species (diars)+ exhibits hyper-fine splitting due to two equivalent 75As(I=3/2) nuclei. Resonances due to secondary products are reported and assignments discussed.

Evidence is presented for the involvement of d-orbitals in the bonding of arsines. In (diars)+ there is mixing of arsenic “lone-pair” orbitals with benzene ring π-orbitals.

II.

Detailed electronic spectral measurements at 300 and 77˚K have been carried out on five-coordinate complexes of low-spin nickel(II), including complexes of both trigonal bipyramidal (TBP) and square pyramidal (SPY) geometry. TBP complexes are of the form NiLX+ (X=halide or cyanide,

L = Qƭ(CH2)3As(CH3)2]3 or

P [hexagon - Q'CH3] , Q = P, As,

Q’=S, Se).

The electronic spectra of these compounds exhibit a novel feature at low temperature. The first ligand field band, which is asymmetric in the room temperature solution spectrum, is considerably more symmetrical at 77˚K. This effect is interpreted in terms of changes in the structure of the complex.

The SPY complexes are of the form Ni(diars)2Xz (X=CL, Br, CNS, CN, thiourea, NO2, As). On the basis of the spectral results, the d-level ordering is concluded to be xy ˂ xz, yz ˂ z2 ˂˂ x2 - y2. Central to this interpretation is identification of the symmetry-allowed 1A11E (xz, yz → x2 - y2) transition. This assignment was facilitated by the low temperature measurements.

An assignment of the charge-transfer spectra of the five-coordinate complexes is reported, and electronic spectral criteria for distinguishing the two limiting geometries are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absolute f-values for 7 transitions in the first spectra of 4 elements have been measured using the atomic beam absorption technique. The equivalent widths of the absorption lines are measured with a photoelectric scanner and the atomic beam density is determined by continuously weighing a part of it with a sensitive automatic microbalance. The complete theory is presented and corrections are calculated to cope with gas absorption by the deposit on the microbalance pan and atoms which do not stick to the pan. An additional correction for the failure of the assumption of effusive flow in the formation of the atomic beam at large densities has been measured experimentally.

The following f-values were measured:

Fe: fλ3720 = 0.0430 ± 8%

Cu: fλ3247 = 0.427 ± 4.5%, fλ3274 = 0.206 ± 4.7%, fλ2492 = 0.0037 ± 9%

Cd: fλ3261 = 0.00190 ± 7%, fλ2288 = 1.38 ± 12%

Au: fλ2428 = 0.283 ± 5.3%

Comparison with other accurately measured f-values, where they exist, shows agreement within experimental errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we study the growth of a Li electrode-electrolyte interface in the presence of an elastic prestress. In particular, we focus our interest on Li-air batteries with a solid electrolyte, LIPON, which is a new type of secondary or rechargeable battery. Theoretical studies and experimental evidence show that during the process of charging the battery the replated lithium adds unevenly to the electrode surface. This phenomenon eventually leads to dendrite formation as the battery is charged and discharged numerous times. In order to suppress or alleviate this deleterious effect of dendrite growth, we put forth a study based on a linear stability analysis. Taking into account all the mechanisms of mass transport and interfacial kinetics, we model the evolution of the interface. We find that, in the absence of stress, the stability of a planar interface depends on interfacial diffusion properties and interfacial energy. Specifically, if Herring-Mullins capillarity-driven interfacial diffusion is accounted for, interfaces are unstable against all perturbations of wavenumber larger than a critical value. We find that the effect of an elastic prestress is always to stabilize planar interfacial growth by increasing the critical wavenumber for instability. A parametric study results in quantifying the extent of the prestress stabilization in a manner that can potentially be used in the design of Li-air batteries. Moreover, employing the theory of finite differences we numerically solve the equation that describes the evolution of the surface profile and present visualization results of the surface evolution by time. Lastly, numerical simulations performed in a commercial finite element software validate the theoretical formulation of the interfacial elastic energy change with respect to the planar interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some of the metallogenic provinces of the southwestern United States and northern Mexico are defined by the geographic distribution of trace elements in the primary sulfide minerals chalcopyrite and sphalerite. The elements investigated include antimony, arsenic, bismuth, cadmium, cobalt, gallium, germanium, indium, manganese, molybdenum, nickel, silver, tellurium, thallium, and tin. Of these elements, cobalt, gallium, germanium, indium, nickel, silver, and tin exhibit the best defined geographic distribution.

The data indicate that chalcopyrite is the preferred host for tin and perhaps molybdenum; sphalerite is the preferred host for cadmium, gallium, germanium, indium, and manganese; galena is the preferred host for antimony, bismuth, silver, tellurium, and thallium; and pyrite is the preferred host for cobalt, nickel, and perhaps arsenic. With respect to the two minerals chalcopyrite and sphalerite, antimony, arsenic, molybdenum, nickel, silver, and tin prefer chalcopyrite; and bismuth, cadmium, cobalt, gallium, germanium, indium, manganese, and thallium prefer sphalerite. This distribution probably is the result of the interaction of several factors, among which are these: the various radii of the elements, the association due to chemical similarities of the major and trace elements, and the degree of ionic versus covalent and metallic character of the metal-sulfur bonds in chalcopyrite and sphalerite. The type of deposit, according to a temperature classification, appears to be of minor importance in determining the trace element content of chalcopyrite and sphalerite.

A preliminary investigation of large single crystals of sphalerite and chalcopyrite indicates that the distribution within a single crystal of some elements such as cadmium in sphalerite and indium and silver in chalcopyrite is relatively uniform, whereas the distribution of some other elements such as cobalt and manganese in sphalerite is somewhat less uniform and the distribution of tin in sphalerite is extremely erratic. The variations in trace element content probably are due largely to variations in the composition of the fluids during the growth of the crystals, but the erratic behavior of tin in sphalerite perhaps is related to the presence of numerous cavities and inclusions in the crystal studied.

Maps of the geographic distribution of trace elements in chalcopyrite and sphalerite exhibit three main belts of greater than average trace element content, which are called the Eastern, Central, and Western belts. These belts are consistent in trend and position with a beltlike distribution of copper, gold, lead, zinc, silver, and tungsten deposits and with most of the major tectonic features. However, there appear to be no definite time relationships, for as many as four metallogenic epochs, from Precambrian to late Tertiary, are represented by ore deposits within the Central belt.

The evidence suggests that the beltlike features have a deep seated origin, perhaps in the sub-crust or outer parts of the mantle, and that the deposits within each belt might be genetically related through a beltlike compositional heterogeneity in the source regions of the ores. Hence, the belts are regarded as metallogenic provinces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo do presente trabalho foi investigar o desempenho de membranas comerciais e funcionalizadas na remoção de metais pesados de efluentes sintéticos, simulando os efluentes gerados pelas indústrias metal-mecânicas. As membranas funcionalizadas foram preparadas em laboratório a partir de diferentes poli (éter imidas) sulfonadas, SPEI, que apresentavam alta hidrofilicidade e capacidade de troca iônica. As permeabilidades hidráulicas das membranas de SPEI aumentaram com o grau de sulfonação. Porém, as rejeições foram ainda muito baixas comparadas as membranas comerciais. Por esta razão, algumas membranas comerciais (NF-90, SW30, HRP98PP e BW30LE) foram investigadas e avaliadas quanto ao comportamento da permeabilidade de água e o grau de rejeição a metais pesados. Os resultados mostraram que a membrana de osmose inversa de baixa energia (BW30LE) tinha o melhor fluxo de água (48,44 L/h.m2) e grau de rejeição a cádmio (98%). Logo, ela foi selecionada para o tratamento dos efluentes sintéticos de indústrias metal-mecânicas contendo níquel e zinco. As indústrias da região de Valencia, na Espanha, forneceram amostras de seus efluentes para análise quantitativa, possibilitando o prepararo de soluções sintéticas modelos. Os resultados foram obtidos variando algumas condições de permeação, tais como a força motriz, o pH e a concentração dos metais na solução de alimentação. Os resultados indicaram que o processo de osmose inversa com a membrana BW30LE é altamente adequado para o tratamento de efluentes contendo metais pesados

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment.