998 resultados para Neural metabolism
Resumo:
A number of recent studies revealed that epigenetic modifications play a central role in the regulation of lipid and of other metabolic pathways such as cholesterol homeostasis, bile acid synthesis, glucose and energy metabolism. Epigenetics refers to aspects of genome functions regulated in a DNA sequence-independent fashion. Chromatin structure is controlled by epigenetic mechanisms through DNA methylation and histone modifications. The main modifications are histone acetylation and deacetylation on specific lysine residues operated by two different classes of enzymes: Histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The interaction between these enzymes and histones can activate or repress gene transcription: Histone acetylation opens and activates chromatin, while deacetylation of histones and DNA methylation compact chromatin making it transcriptionally silent. The new evidences on the importance of HDACs in the regulation of lipid and other metabolic pathways will open new perspectives in the comprehension of the pathophysiology of metabolic disorders.
Resumo:
GABA-A receptors (GABA-ARs) are typically expressed at synaptic or nonsynaptic sites mediating phasic and tonic inhibition, respectively. These two forms of inhibition conjointly control various network oscillations. To disentangle their roles in thalamocortical rhythms, we focally deleted synaptic, γ2 subunit-containing GABA-ARs in the thalamus using viral intervention in mice. After successful removal of γ2 subunit clusters, spontaneous and evoked GABAergic synaptic currents disappeared in thalamocortical cells when the presynaptic, reticular thalamic (nRT) neurons fired in tonic mode. However, when nRT cells fired in burst mode, slow phasic GABA-AR-mediated events persisted, indicating a dynamic, burst-specific recruitment of nonsynaptic GABA-ARs. In vivo, removal of synaptic GABA-ARs reduced the firing of individual thalamocortical cells but did not abolish slow oscillations or sleep spindles. We conclude that nonsynaptic GABA-ARs are recruited in a phasic manner specifically during burst firing of nRT cells and provide sufficient GABA-AR activation to control major thalamocortical oscillations.
Resumo:
Aquest treball vol implementar un projecte de mineria de dades en l'àrea de la petrologia ígnia, especialitat englobada dins la geologia clàssica.
Resumo:
Glucagon-like peptide (GLP)-1 action involves both endocrine and neural pathways to control peripheral tissues. In diabetes the impairment of either pathway may define different subsets of patients: some may be better treated with GLP-1 receptor agonists that are more likely to directly stimulate beta-cells and extrapancreatic receptors, while others may benefit from dipeptidyl peptidase (DPP)-4 inhibitor treatments that are more likely to increase the neural gut-brain-pancreas axis. Elevated plasma concentrations of GLP-1 associated with agonist treatment or bariatric surgery also appear to exert neuroprotective effects, ameliorate postprandial and fasting lipids, improve heart physiology and protect against heart failure, thereby expanding the possible positioning of GLP-1-based therapies. However, the mechanisms behind GLP-1 secretion, the role played by proximal and distal intestinal GLP-1-producing cells as well as the molecular basis of GLP-1 resistance in diabetes are still to be ascertained. The pharmacological features distinguishing GLP-1 receptor agonists from DPP-4 inhibitors are discussed here to address their respective positions in type 2 diabetes.
Resumo:
AbstractPPARP is a nuclear receptor responding in vivo to several free fatty acids, and implicated in cell metabolism, differentiation and survival. PPARp is ubiquitously expressed but shows high expression in the developing and adult brain. PPARp is expressed in different cell types such as neurons and astrocytes, where it might play a role in metabolism. To study this nuclear receptor the laboratory engineered a PPARP -/- mouse model. The aim of my PhD was to dissect the role of PPARP in astrocytes.Experiments in primary culture revealed that cortical astrocytes from PPARP -/- mouse have an impaired energetic metabolism. Unstimulated PPARP -/- astrocytes exhibit a 30% diminution in glucose uptake, correlating to a 30% decrease in lactate release and intracellular glucose. After acute stimulation by D- aspartate mimicking glutamate exposure, both WT and -/- astrocytes up-regulate their metabolism to respond to the increasing energy needed (ATP) for glutamate uptake. According to the Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), the ratio between glucose uptake/ lactate release is 1. However, stimulated PPARp -/- astrocytes display a higher increase in lactate release than glucose uptake which remains lower than in WT. The extra glucose equivalents could come from the degradation of intra cellular glycogen stores, which indeed decrease in PPARP -/- cells upon stimulation. Lower glucose metabolism correlates with a decreased acute glutamate uptake in PPARP -/- astrocytes. Reciprocally, we also observed an increase of glutamate uptake and ATP production after treatment of WT astrocytes with a PPARp agonist. Glutamate transporter protein expression is not affected. However, their trafficking and localization might be altered as PPARp -/- astrocytes have higher cholesterol levels, which may also affect proper transporter structure in the membrane.Metabolism, transporter localization and cholesterol levels are respectively linked to cell mobility, cell cytoskeleton and cellular membrane composition. All three functions are important in astrocytes to in vivo acquire star shaped morphology, in a process known as stellation. PPARP -/- astrocytes showed an impaired acquired stellation in presence of neurons or chemical stimuli, as well as more actin stress fibers and cell adhesion structures. While non stellation of astrocytes is mainly an in vitro phenomenon, it reveals PPARp -/- primary astrocytes inability to respond to different exterior stimuli. These morphological phenotypes correlate with a slower migration in cell culture wound healing assays.This thesis work demonstrates that PPARp is implicated in cortical astrocyte glucose metabolism. PPARp absence leads to an unusual intracellular glycogen use. Added to the effect on acute glutamate uptake and astrocyte migration, PPARp could be an interesting target for neuroprotection therapies.RésuméPPARP est un récepteur nucléaire qui a pour ligands naturels certains acides gras libres. Il est impliqué dans le métabolisme, la différentiation et la survie des cellules. PPARP est ubiquitaire, et a une expression élevée dans le cerveau en développement ainsi qu'adulte. PPARp est exprimé dans différents types cellulaires tels que les neurones et les astrocytes, où il régule potentiellement leurs métabolismes. Pour étudier ce récepteur nucléaire, le laboratoire a créé un modèle de souris PPARp -/-. L'objectif de ma thèse est de comprendre le rôle de PPARp dans les astrocytes.Les expériences montrent un défaut du métabolisme énergétique dans les astrocytes corticaux primaires tirés de souris PPARp -/-. Sans stimulation, l'entrée du glucose dans les astrocytes PPARP -/- est diminuée de 30% ce qui correspond à une diminution de 30% du relargage du lactate. Après stimulation par du D-Aspartate qui mime une exposition au glutamate, les astrocytes WT et -/- augmentent leur métabolisme en réponse à la demande accrue en énergie (ATP) due à l'entrée du glutamate. D'après l'Astrocyte Neuron Lactate Shuttle Hypothesis (ANLSH), le ratio entre le glucose entrant et le lactate sortant est de 1. Cependant le relargage du lactate dans les astrocytes PPARP-/- est plus élevé que l'entrée du glucose. L'apport supplémentaire de glucose transformé en lactate pourrait provenir de la dégradation des stocks de glycogène intracellulaire, qui sont partiellement diminués après stimulation dans les cellules PPARP -/-. Un métabolisme plus faible du glucose corrèle avec une réduction de l'import du glutamate dans les astrocytes PPARp -/-. Réciproquement, nous observons une augmentation de l'import du glutamate et de la production d'ATP après traitement avec l'agoniste pour PPARp. Bien que l'expression des transporteurs de glutamate ne soit pas affectée, nous ne pouvons pas exclure que leur localisation et leur structure soient altérées du fait du niveau élevé de cholestérol dans les astrocytes PPARp -/-.Le métabolisme, la localisation des transporteurs et le niveau de cholestérol sont tous liés au cytosquelette, à la mobilité, et à la composition des membranes cellulaires. Toutes ces fonctions sont importantes pour les astrocytes pour acquérir leur morphologie in vivo. Les astrocytes PPARP -/- présentent un défaut de stellation, aussi bien en présence de neurones que de stimuli chimiques, ainsi qu'un plus grand nombre de fibres de stress (actine) et de structures d'adhésion cellulaire. Bien que les astrocytes non stellaires soient principalement observés in vitro, le défaut de stellation des astrocytes primaires PPARp -/- indique une incapacité à répondre aux différents stimuli extérieurs. Ces phénotypes morphologiques corrèlent avec une migration plus lente en cas de lésion de la culture.Ce travail de thèse a permis de démontrer l'implication de PPARP dans le métabolisme du glucose des astrocytes corticaux. L'absence de ce récepteur nucléaire amène à l'utilisation du glucose intracellulaire, auquel s'ajoutent les effets sur l'import du glutamate et la migration des astrocytes. PPARp aurait des effets neuroprotecteurs, et de ce fait pourrait être utilisé à des fins thérapeutiques.
Resumo:
The aim of the present study was to determine whether an increase in resting energy expenditure (REE) contributes to the impaired nutritional status of Gambian children infected by a low level of infection with pathogenic helminths. The REE of 24 children infected with hookworm, Ascaris, Strongyloides, or Trichuris (mean +/- SEM age = 11.9 +/- 0.1 years) and eight controls without infection (mean +/- SEM age = 11.8 +/- 0.1 years) were measured by indirect calorimetry with a hood system (test A). This measurement was repeated after treatment with 400 mg of albendazole (patients) or a placebo (controls) (test B). When normalized for fat free mass, REE in test A was not different in the patients (177 +/- 2 kJ/kg x day) and in the controls (164 +/- 7 kJ/kg x day); furthermore, REE did not change significantly after treatment in the patients (173 +/- 3 kJ/kg x day) or in the controls (160 +/- 8 kJ/kg x day). There was no significant difference in the respiratory quotient between patients and controls, nor between tests A and B. It is concluded that a low level of helminth infection does not affect significantly the energy metabolism of Gambian children.
Resumo:
Exogenous oxidized cholesterol disturbs both lipid metabolism and immune functions. Therefore, it may perturb these modulations with ageing. Effects of the dietary protein type on oxidized cholesterol-induced modulations of age-related changes in lipid metabolism and immune function was examined using differently aged (4 weeks versus 8 months) male Sprague-Dawley rats when casein, soybean protein or milk whey protein isolate (WPI) was the dietary protein source, respectively. The rats were given one of the three proteins in diet containing 0.2% oxidized cholesterols mixture. Soybean protein, as compared with the other two proteins, significantly lowered both the serum thiobarbituric acid reactive substances value and cholesterol, whereas it elevated the ratio of high density lipoprotein-cholesterol/cholesterol in young rats, but not in adult. Moreover, soybean protein, but not casein and WPI, suppressed the elevation of Delta6 desaturation indices of phospholipids in both liver and spleen, particularly in young. On the other hand, WPI, compared to the other two proteins, inhibited the leukotriene B4 production of spleen, irrespective of age. Soybean protein reduced the ratio of CD4(+)/CD8(+) T-cells in splenic lymphocytes. Therefore, the levels of immunoglobulin (Ig)A, IgE and IgG in serum were lowered in rats given soybean protein in both age groups except for IgA in adult, although these observations were not shown in rats given other proteins. Thus, various perturbations of lipid metabolism and immune function caused by oxidized cholesterol were modified depending on the type of dietary protein. The moderation by soybean protein on the change of lipid metabolism seems to be susceptible in young rats whose homeostatic ability is immature. These observations may be exerted through both the promotion of oxidized cholesterol excretion to feces and the change of hormonal release, while WPI may suppress the disturbance of immune function by oxidized cholesterol in both ages. This alleviation may be associated with a large amount of lactoglobulin in WPI. These results thus showed a possibility that oxidized cholesterol-induced perturbations of age-related changes of lipid metabolism and immune function can be moderated by both the selection and combination of dietary protein.
Resumo:
OBJECTIVE: To evaluate the effect of strenuous exercise on bone metabolism and related hormones in elderly subjects. METHODS: Twenty one active elderly subjects (11 men and 10 women; mean age 73.3 years) showing a mean theoretical Vo2max of 151.4% participated. Concentrations of plasma ionised calcium (iCa), serum intact parathyroid hormone (iPTH), 25-hydroxyvitamin D (25(OH)D), and 1.25-dihydroxy-vitamin D3 (1.25(OH)2D3), as well as the bone biochemical markers type I collagen C-telopeptide for bone resorption and osteocalcin and bone alkaline phosphatase for bone formation, were analysed before and after a maximal incremental exercise test. RESULTS: At basal level, iPTH was positively correlated with age (r = 0.56, p < 0.01) and negatively correlated with 25(OH)D (r = -0.50; p < 0.01) and 1.25(OH)2D3 (r = -0.47; p < 0.05). Moreover, 25(OH)D and 1.25(OH)2D3 levels were negatively correlated with age (r = -0.50, p < 0.01 and r = -0.53, p < 0.01, respectively). After exercise, iCa and 25(OH)D decreased (p < 0.001 and p = 0.01, respectively) while iPTH increased (p < 0.001). The levels of 1.25(OH)2D3, bone biochemical markers, haematocrit, and haemoglobin were unchanged. The variations in iCa and 25(OH)D were not related to age and/or sex. The iPTH variation was directly related to basal iPTH levels (p < 0.01) and indirectly related to age. CONCLUSIONS: In active elderly subjects, strenuous exercise disturbed calcium homeostasis and bone related hormones without immediate measurable effect on bone turnover. Although an increase in iPTH could have an anabolic action on bone tissue, our findings from our short term study did not allow us to conclude that such action occurred.
Resumo:
Giant congenital naevi are pigmented childhood lesions that frequently lead to melanoma, the most aggressive skin cancer. The mechanisms underlying this malignancy are largely unknown, and there are no effective therapies. Here we describe a mouse model for giant congenital naevi and show that naevi and melanoma prominently express Sox10, a transcription factor crucial for the formation of melanocytes from the neural crest. Strikingly, Sox10 haploinsufficiency counteracts Nras(Q61K)-driven congenital naevus and melanoma formation without affecting the physiological functions of neural crest derivatives in the skin. Moreover, Sox10 is also crucial for the maintenance of neoplastic cells in vivo. In human patients, virtually all congenital naevi and melanomas are SOX10 positive. Furthermore, SOX10 silencing in human melanoma cells suppresses neural crest stem cell properties, counteracts proliferation and cell survival, and completely abolishes in vivo tumour formation. Thus, SOX10 represents a promising target for the treatment of congenital naevi and melanoma in human patients.
Resumo:
Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.
Resumo:
Host lipids have been implicated in the pathogenesis of Toxoplasma gondiiinfection. To determine if Toxoplasmainfection influences the lipid status in the normal host, we assessed serum lipids of Swiss-Webster mice during infection with the BGD-1 strain (type-2) at a series of time points. Mice were bled at days zero and 42 post-infection, and subgroups were additionally bled on alternating weeks (model 1), or sacrificed at days zero, 14 and 42 (model 2) for the measurement of total cholesterol (Chl), high density lipoproteins (HDL), low density lipoproteins (LDL) and triglycerides and adiponectin. At day 42, brains were harvested for cyst enumeration. A significant decrease (p = 0.02) in HDL and total Chl was first noted in infected vs. control mice at day 14 and persisted to day 42 (p = 0.013). Conversely, LDL was unaltered until day 42, when it increased (p = 0.043). Serum LDL levels at day 42 correlated only with cyst counts of above 300 (found in 44% mice), while the change in HDL between days zero and 42 correlated with both the overall mean cyst count (p = 0.041) and cyst counts above 300 (p = 0.044). Calculated per cyst, this decrease in HDL in individual animals ranged from 0.1-17 µmol/L, with a mean of 2.43 ± 4.14 µmol/L. Serum adiponectin levels remained similar between infected and control mice throughout the experiment.
Resumo:
Background. The enteric nervous system (ENS) is entirely derived from neural crest and its normal development is regulated by specific molecular pathways. Failure in complete ENS formation results in aganglionic gut conditions such as Hirschsprung's disease (HSCR). Recently, PROKR1 expression has been demonstrated in mouse enteric neural crest derived cells and Prok-1 was shown to work coordinately with GDNF in the development of the ENS. Principal Findings. In the present report, ENS progenitors were isolated and characterized from the ganglionic gut from children diagnosed with and without HSCR, and the expression of prokineticin receptors was examined. Immunocytochemical analysis of neurosphere-forming cells demonstrated that both PROKR1 and PROKR2 were present in human enteric neural crest cells. In addition, we also performed a mutational analysis of PROKR1, PROKR2, PROK1 and PROK2 genes in a cohort of HSCR patients, evaluating them for the first time as susceptibility genes for the disease. Several missense variants were detected, most of them affecting highly conserved amino acid residues of the protein and located in functional domains of both receptors, which suggests a possible deleterious effect in their biological function. Conclusions. Our results suggest that not only PROKR1, but also PROKR2 might mediate a complementary signalling to the RET/GFRα1/GDNF pathway supporting proliferation/survival and differentiation of precursor cells during ENS development. These findings, together with the detection of sequence variants in PROKR1, PROK1 and PROKR2 genes associated to HSCR and, in some cases in combination with RET or GDNF mutations, provide the first evidence to consider them as susceptibility genes for HSCR.
Resumo:
BACKGROUND: The elongase of long chain fatty acids family 6 (ELOVL6) is an enzyme that specifically catalyzes the elongation of saturated and monounsaturated fatty acids with 12, 14 and 16 carbons. ELOVL6 is expressed in lipogenic tissues and it is regulated by sterol regulatory element binding protein 1 (SREBP-1). OBJECTIVE: We investigated whether ELOVL6 genetic variation is associated with insulin sensitivity in a population from southern Spain. DESIGN: We undertook a prospective, population-based study collecting phenotypic, metabolic, nutritional and genetic information. Measurements were made of weight and height and the body mass index (BMI) was calculated. Insulin resistance was measured by homeostasis model assessment. The type of dietary fat was assessed from samples of cooking oil taken from the participants' kitchens and analyzed by gas chromatography. Five SNPs of the ELOVL6 gene were analyzed by SNPlex. RESULTS: Carriers of the minor alleles of the SNPs rs9997926 and rs6824447 had a lower risk of having high HOMA_IR, whereas carriers of the minor allele rs17041272 had a higher risk of being insulin resistant. An interaction was detected between the rs6824447 polymorphism and the intake of oil in relation with insulin resistance, such that carriers of this minor allele who consumed sunflower oil had lower HOMA_IR than those who did not have this allele (P = 0.001). CONCLUSIONS: Genetic variations in the ELOVL6 gene were associated with insulin sensitivity in this population-based study.
Resumo:
To evaluate the role of adipose tissue in the metabolic stress response of critically ill patients, the release of glycerol and lactate by subcutaneous adipose tissue was assessed by means of microdialysis in patients with sepsis or circulatory failure and in healthy subjects. Patients with sepsis had lower plasma free fatty acid concentrations and non-significant elevations of plasma glycerol concentrations, but higher adipose-systemic glycerol concentrations gradients than healthy subjects or patients with circulatory failure, indicating a stimulation of subcutaneous adipose lipolysis. They also had a higher lipid oxidation. Lipid metabolism (adipose-systemic glycerol gradients, lipid oxidation) was not altered in patients with circulatory failure. These observations highlight major differences in lipolysis and lipid utilization between patients with sepsis and circulatory failure. Hyperlactataemia was present in both groups of patients, but the adipose-systemic lactate concentration gradient was not increased, indicating that lactate production by adipose tissue was not involved. This speaks against a role of adipose tissue in the development of hyperlactataemia in critically ill patients.
Resumo:
Despite the widespread use of Cannabis as recreational drug or as medicine, little is known about its toxicity. The accumulation, metabolism and toxicity of THC were analyzed 10 days after a single treatment, and after repeated exposures during 10 days. Mixed-cell aggregate cultures of fetal rat telencephalon were used as in vitro model, as well as aggregates enriched either in neurons or in glial cells. It was found that THC accumulated preferentially in neurons, and that glia-neuron interactions decreased THC accumulation. The quantification of 11-OH-THC and of THC-COOH showed that brain aggregates were capable of THC metabolism. No cell-type difference was found for the metabolite 11-OH-THC, whereas the THC-COOH content was higher in mixed-cell cultures. No cell death was found at THC concentrations of 2 microM in single treatment and of 1 microM and 2 microM in repeated treatments. Neurons, and particularly GABAergic neurons, were most sensitive to THC. Only the GABAergic marker was affected after the single treatment, whereas the GABAergic, cholinergic and astrocytic markers were decreased after the repeated treatments. JWH 015, a CB2 receptor agonist, showed effects similar to THC, whereas ACEA, a CB1 receptor agonist, had no effect. The expression of the cytokine IL-6 was upregulated 48 h after the single treatment with 5 microM of THC or JWH 015, whereas the expression of TNF-alpha remained unchanged. These results suggest that the adverse effects of THC were related either to THC accumulation or to cannabinoid receptor activation and associated with IL-6 upregulation.