1000 resultados para Nebot i Sanz, Josep-Correspondencia
Resumo:
The purpose of resource management is the efficient and effective use of network resources, for instance bandwidth. In this article, a connection oriented network scenario is considered, where a certain amount of bandwidth is reserved for each label switch path (LSP), which is a logical path, in a MPLS or GMPLS environment. Assuming there is also some kind of admission control (explicit or implicit), these environments typically provide quality of service (QoS) guarantees. It could happen that some LSPs become busy, thus rejecting connections, while other LSPs may be under-utilised. We propose a distributed lightweight monitoring technique, based on threshold values, the objective of which is to detect congestion when it occurs in an LSP and activate the corresponding alarm which will trigger a dynamic bandwidth reallocation mechanism
Resumo:
We present a system for dynamic network resource configuration in environments with bandwidth reservation and path restoration mechanisms. Our focus is on the dynamic bandwidth management results, although the main goal of the system is the integration of the different mechanisms that manage the reserved paths (bandwidth, restoration, and spare capacity planning). The objective is to avoid conflicts between these mechanisms. The system is able to dynamically manage a logical network such as a virtual path network in ATM or a label switch path network in MPLS. This system has been designed to be modular in the sense that in can be activated or deactivated, and it can be applied only in a sub-network. The system design and implementation is based on a multi-agent system (MAS). We also included details of its architecture and implementation
Resumo:
Low concentrations of elements in geochemical analyses have the peculiarity of beingcompositional data and, for a given level of significance, are likely to be beyond thecapabilities of laboratories to distinguish between minute concentrations and completeabsence, thus preventing laboratories from reporting extremely low concentrations of theanalyte. Instead, what is reported is the detection limit, which is the minimumconcentration that conclusively differentiates between presence and absence of theelement. A spatially distributed exhaustive sample is employed in this study to generateunbiased sub-samples, which are further censored to observe the effect that differentdetection limits and sample sizes have on the inference of population distributionsstarting from geochemical analyses having specimens below detection limit (nondetects).The isometric logratio transformation is used to convert the compositional data in thesimplex to samples in real space, thus allowing the practitioner to properly borrow fromthe large source of statistical techniques valid only in real space. The bootstrap method isused to numerically investigate the reliability of inferring several distributionalparameters employing different forms of imputation for the censored data. The casestudy illustrates that, in general, best results are obtained when imputations are madeusing the distribution best fitting the readings above detection limit and exposes theproblems of other more widely used practices. When the sample is spatially correlated, itis necessary to combine the bootstrap with stochastic simulation
Resumo:
This paper examines a dataset which is modeled well by thePoisson-Log Normal process and by this process mixed with LogNormal data, which are both turned into compositions. Thisgenerates compositional data that has zeros without any need forconditional models or assuming that there is missing or censoreddata that needs adjustment. It also enables us to model dependenceon covariates and within the composition
Resumo:
The statistical analysis of compositional data should be treated using logratios of parts,which are difficult to use correctly in standard statistical packages. For this reason afreeware package, named CoDaPack was created. This software implements most of thebasic statistical methods suitable for compositional data.In this paper we describe the new version of the package that now is calledCoDaPack3D. It is developed in Visual Basic for applications (associated with Excel©),Visual Basic and Open GL, and it is oriented towards users with a minimum knowledgeof computers with the aim at being simple and easy to use.This new version includes new graphical output in 2D and 3D. These outputs could bezoomed and, in 3D, rotated. Also a customization menu is included and outputs couldbe saved in jpeg format. Also this new version includes an interactive help and alldialog windows have been improved in order to facilitate its use.To use CoDaPack one has to access Excel© and introduce the data in a standardspreadsheet. These should be organized as a matrix where Excel© rows correspond tothe observations and columns to the parts. The user executes macros that returnnumerical or graphical results. There are two kinds of numerical results: new variablesand descriptive statistics, and both appear on the same sheet. Graphical output appearsin independent windows. In the present version there are 8 menus, with a total of 38submenus which, after some dialogue, directly call the corresponding macro. Thedialogues ask the user to input variables and further parameters needed, as well aswhere to put these results. The web site http://ima.udg.es/CoDaPack contains thisfreeware package and only Microsoft Excel© under Microsoft Windows© is required torun the software.Kew words: Compositional data Analysis, Software
Resumo:
This paper describes a new reliable method, based on modal interval analysis (MIA) and set inversion (SI) techniques, for the characterization of solution sets defined by quantified constraints satisfaction problems (QCSP) over continuous domains. The presented methodology, called quantified set inversion (QSI), can be used over a wide range of engineering problems involving uncertain nonlinear models. Finally, an application on parameter identification is presented
Resumo:
The R-package “compositions”is a tool for advanced compositional analysis. Its basicfunctionality has seen some conceptual improvement, containing now some facilitiesto work with and represent ilr bases built from balances, and an elaborated subsys-tem for dealing with several kinds of irregular data: (rounded or structural) zeroes,incomplete observations and outliers. The general approach to these irregularities isbased on subcompositions: for an irregular datum, one can distinguish a “regular” sub-composition (where all parts are actually observed and the datum behaves typically)and a “problematic” subcomposition (with those unobserved, zero or rounded parts, orelse where the datum shows an erratic or atypical behaviour). Systematic classificationschemes are proposed for both outliers and missing values (including zeros) focusing onthe nature of irregularities in the datum subcomposition(s).To compute statistics with values missing at random and structural zeros, a projectionapproach is implemented: a given datum contributes to the estimation of the desiredparameters only on the subcompositon where it was observed. For data sets withvalues below the detection limit, two different approaches are provided: the well-knownimputation technique, and also the projection approach.To compute statistics in the presence of outliers, robust statistics are adapted to thecharacteristics of compositional data, based on the minimum covariance determinantapproach. The outlier classification is based on four different models of outlier occur-rence and Monte-Carlo-based tests for their characterization. Furthermore the packageprovides special plots helping to understand the nature of outliers in the dataset.Keywords: coda-dendrogram, lost values, MAR, missing data, MCD estimator,robustness, rounded zeros
Resumo:
A decentralized model reference controller is designed to reduce the magnitude of the transversal vibration of a flexible cable-stayed beam structure induced by a seismic excitation. The controller design is made based on the principle of sliding mode such that a priori knowledge
Resumo:
A compositional time series is obtained when a compositional data vector is observed atdifferent points in time. Inherently, then, a compositional time series is a multivariatetime series with important constraints on the variables observed at any instance in time.Although this type of data frequently occurs in situations of real practical interest, atrawl through the statistical literature reveals that research in the field is very much in itsinfancy and that many theoretical and empirical issues still remain to be addressed. Anyappropriate statistical methodology for the analysis of compositional time series musttake into account the constraints which are not allowed for by the usual statisticaltechniques available for analysing multivariate time series. One general approach toanalyzing compositional time series consists in the application of an initial transform tobreak the positive and unit sum constraints, followed by the analysis of the transformedtime series using multivariate ARIMA models. In this paper we discuss the use of theadditive log-ratio, centred log-ratio and isometric log-ratio transforms. We also presentresults from an empirical study designed to explore how the selection of the initialtransform affects subsequent multivariate ARIMA modelling as well as the quality ofthe forecasts
Resumo:
This paper shows the impact of the atomic capabilities concept to include control-oriented knowledge of linear control systems in the decisions making structure of physical agents. These agents operate in a real environment managing physical objects (e.g. their physical bodies) in coordinated tasks. This approach is presented using an introspective reasoning approach and control theory based on the specific tasks of passing a ball and executing the offside manoeuvre between physical agents in the robotic soccer testbed. Experimental results and conclusions are presented, emphasising the advantages of our approach that improve the multi-agent performance in cooperative systems
Resumo:
In this paper, robustness of parametric systems is analyzed using a new approach to interval mathematics called Modal Interval Analysis. Modal Intervals are an interval extension that, instead of classic intervals, recovers some of the properties required by a numerical system. Modal Interval Analysis not only simplifies the computation of interval functions but allows semantic interpretation of their results. Necessary, sufficient and, in some cases, necessary and sufficient conditions for robust performance are presented
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table hasn rows and m columns and all probabilities are non-null. This kind of table can beseen as an element in the simplex of n · m parts. In this context, the marginals areidentified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclideanelements of the Aitchison geometry of the simplex can also be translated into the tableof probabilities: subspaces, orthogonal projections, distances.Two important questions are addressed: a) given a table of probabilities, which isthe nearest independent table to the initial one? b) which is the largest orthogonalprojection of a row onto a column? or, equivalently, which is the information in arow explained by a column, thus explaining the interaction? To answer these questionsthree orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independenttwo-way tables and fully dependent tables representing row-column interaction. Animportant result is that the nearest independent table is the product of the two (rowand column)-wise geometric marginal tables. A corollary is that, in an independenttable, the geometric marginals conform with the traditional (arithmetic) marginals.These decompositions can be compared with standard log-linear models.Key words: balance, compositional data, simplex, Aitchison geometry, composition,orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure,contingency table
Resumo:
L'article és una reflexió sobre els requisits de formació dels professionals que demana la societat del coneixement. Un dels objectius més importants que ha de tenir la universitat en la societat del coneixement és la formació de professionals competents que tinguin prou eines intel·lectuals per a enfrontar-se a la incertesa de la informació, a la consciència que aquesta té una data de caducitat a curt termini i a l'ansietat que això provoca. Però, a més, també han de ser capaços de definir i crear les eines de treball amb què donaran sentit i eficàcia a aquest coneixement mudable i mutant. Per això, l'espai europeu d'ensenyament superior prioritza la competència transversal del treball col·laboratiu amb l'objectiu de promoure un aprenentatge autònom, compromès i adaptat a les noves necessitats de l'empresa del segle xxi. En aquest context, es presenta l'entorn teòric que fonamenta el treball desenvolupat a la plataforma informàtica ACME, que uneix el treball col·laboratiu i l'aprenentatge semipresencial o blended learning. Així mateix, es descriuen amb detall alguns exemples de wikis, paradigma del treball col·laboratiu, fets en assignatures impartides per la Universitat de Girona en l'espai virtual ACME
Resumo:
Simpson's paradox, also known as amalgamation or aggregation paradox, appears whendealing with proportions. Proportions are by construction parts of a whole, which canbe interpreted as compositions assuming they only carry relative information. TheAitchison inner product space structure of the simplex, the sample space of compositions, explains the appearance of the paradox, given that amalgamation is a nonlinearoperation within that structure. Here we propose to use balances, which are specificelements of this structure, to analyse situations where the paradox might appear. Withthe proposed approach we obtain that the centre of the tables analysed is a naturalway to compare them, which avoids by construction the possibility of a paradox.Key words: Aitchison geometry, geometric mean, orthogonal projection