881 resultados para Nanostructured WO3
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The genus Astronium (Anacardiaceae) includes species, such as Astronium fraxinifolium, Astronium graveolens, and Astronium urundeuva, which possess anti-inflammatory, anti-ulcerogenic, healing, and antimicrobial properties. Nanostructured lipid systems are able to potentiate the action of plant extracts, reducing the required dose and side effects and improving antimicrobial activity. This work aims to evaluate a nanostructured lipid system that was developed as a strategy to improve the anti-Candida albicans activity of hydroethanolic extracts of stems and leaves from Astronium sp. The antifungal activity against C. albicans (ATCC 18804) was evaluated in vitro by a microdilution technique. In addition to the in vitro assays, the Astronium sp. that showed the best antifungal activity and selectivity index was submitted to an in vivo assay using a model of vulvovaginal candidiasis infection. In these assays, the extracts were either used alone or were incorporated into the nanostructured lipid system (comprising 10% oil phase, 10% surfactant, and 80% aqueous phase). The results indicated a minimal inhibitory concentration of 125.00 µg/mL before incorporation into the nanostructured system; this activity was even more enhanced when this extract presented a minimal inhibitory concentration of 15.62 µg/mL after its incorporation. In vivo assay dates showed that the nanostructure-incorporated extract of A. urundeuva leaves was more effective than both the unincorporated extract and the antifungal positive control (amphotericin B). These results suggest that this nanostructured lipid system can be used in a strategy to improve the in vitro and in vivo anti-C. albicans activity of hydroethanolic extracts of Astronium sp.
Resumo:
Metal oxide nanocomposites were prepared by two different routes: polyol and sol-gel. Characterization by X ray diffraction showed that the first process produces directly a two-phase material, while the sol-gel powder never showed second phase below 600°C. Light spectroscopy of the treated powders indicated similarities for the processed materials. Although the overall material compositions are about the same, different structural characteristics are found for each processing. With the exception of Ti-Zn materials, all the double metal oxide powders showed higher absorbance than either TiO2 powder.
Resumo:
Nanostructured composites based on titanium dioxide have been studied in order to improve optical and photo-catalytic properties, as well as their performance in gas sensors. In this work, titanium and tin dioxides were simultaneously synthesized by the polyol method resulting in TiO2 platelet coated with SnO2 nanoparticles as was observed by scanning electron microscopy. The thermal analysis showed that the combined synthesis promotes more easily the crystallization of the TiO2 rutile phase. The composite obtained after heat treatment at 500 °C showed to be formed of almost only rutile phases of both oxides. The optical properties analyzed by UV-Vis spectroscopy showed that the combined oxides have higher absorbance, which reinforces a model found in the literature based on the flow of photo-generated electrons to the conduction band of SnO2 delaying the recombination of charges.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Used as catalysts even in organic and inorganic molecules, as additives on catalysts, electrochromic films on smart windows the tungsten trioxide have been largely studied on the lasts decades, but there is just a few about it's luminescence. Using as precursors nitric acid and sodium tungstate the tungsten trioxide were been prepared thru wet process then treating on thermic and hydrothermal treatments. Where been evaluated the effects of methodology, nitric acid concentration, duration and temperature of treatments. The samples were characterized by X-ray diffraction (XRD), Raman scattering spectroscopy (RSS), Fourier transformed infrared spectroscopy, photoluminescence spectroscopy (PLS) and X-ray excited optical luminescence (XEOL). Hydrated phases of tungsten trioxide were obtained through hydrothermal treatments and the non-hydrated phases occur with thermic treatments. The acid concentration has the ability to determine the major phase formed as well the temperature determine the hydratation of the product. With lower temperatures dihydrate phase were preferable formed and with the rise of temperature, the water molecules were lost up to the fractionary hydratation and then the non-hydrated phase with higher temperatures depending on the atmosphere used on the thermal treatment. Doping the system with europium ions even substituting tungsten or in the interstices of the matrix were not been successful, as well the XEOL spectroscopy intensity were null and quite low for ultraviolet and visible excitation photoluminescence because of oxygen defect levels localized into the prohibited band.
Resumo:
Used as catalysts even in organic and inorganic molecules, as additives on catalysts, electrochromic films on smart windows the tungsten trioxide have been largely studied on the lasts decades, but there is just a few about it's luminescence. Using as precursors nitric acid and sodium tungstate the tungsten trioxide were been prepared thru wet process then treating on thermic and hydrothermal treatments. Where been evaluated the effects of methodology, nitric acid concentration, duration and temperature of treatments. The samples were characterized by X-ray diffraction (XRD), Raman scattering spectroscopy (RSS), Fourier transformed infrared spectroscopy, photoluminescence spectroscopy (PLS) and X-ray excited optical luminescence (XEOL). Hydrated phases of tungsten trioxide were obtained through hydrothermal treatments and the non-hydrated phases occur with thermic treatments. The acid concentration has the ability to determine the major phase formed as well the temperature determine the hydratation of the product. With lower temperatures dihydrate phase were preferable formed and with the rise of temperature, the water molecules were lost up to the fractionary hydratation and then the non-hydrated phase with higher temperatures depending on the atmosphere used on the thermal treatment. Doping the system with europium ions even substituting tungsten or in the interstices of the matrix were not been successful, as well the XEOL spectroscopy intensity were null and quite low for ultraviolet and visible excitation photoluminescence because of oxygen defect levels localized into the prohibited band.
Resumo:
Nanostructured Pb0.90Ba0.10Zr0.40Ti0.60O3 dense ceramics presenting an average grain size of 62 +/- 5 nm was prepared by the polymeric precursor method and using the spark plasma sintering technique. The dielectric permittivity curves versus temperature exhibit broad anomaly, indicative of a diffuse phase transition. This result can be explained by the spread of Curie temperatures which are expected to depend on the degree of tetragonality related to the grain size distribution. A pronounced decrease in the maximum of the dielectric permittivity value is attributed to the existence of a large amount of grain boundaries which are non-ferroelectric regions.
Resumo:
Optical and structural properties of planar and channel waveguides based on sol gel Er3+ and Yb3+ co-doped SiO2-ZrO2 are reported. Microstructured channels with high homogeneous surface profile were written onto the surface of multilayered densified films deposited on SiO2/Si substrates by a femtosecond laser etching technique. The densification of the planar waveguides was evaluated from changes in the refractive index and thickness, with full densification being achieved at 900 degrees C after annealing from 23 up to 500 min, depending on the ZrO2 content Crystal nucleation and growth took place together with densification, thereby producing transparent glass ceramic planar waveguides containing rare earth-doped ZrO2 nanocrystals dispersed in a silica-based glassy host Low roughness and crack-free surface as well as high confinement coefficient were achieved for all the compositions. Enhanced NIR luminescence of the Er3+ ions was observed for the Yb3+- codoped planar waveguides, denoting an efficient energy transfer from the Yb3+ to the Er3+ ion. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The dependences of phase stability and solid state phase transitions on the crystallite size in ZrO2-10, 12 and 14 mol% Sc2O3 nanopowders are investigated by X-ray powder diffraction using a synchrotron source (S-XPD). The average crystallite sizes lie within the range of 35 to 100 nm, approximately. At room temperature these solid solutions were previously characterised as mixtures of a cubic phase and one or two rhombohedral phases, beta and gamma, with their fractions depending on composition and average crystallite sizes. In this study, it is shown that at high temperatures these solid solutions become cubic single-phased. The size-dependent temperatures of the transitions from the rhombohedral phases to the cubic phase at high temperature are determined through the analyses of a number of S-XPD patterns. These transitions were studied on cooling and on heating, exhibiting hysteresis effects whose relevant features are size and composition dependent.
Resumo:
The influence of silver nanoparticles (NPs) on the frequency upconversion luminescence in Er3+ doped TeO2-WO3-Bi2O3 glasses is reported. The effect of the NPs on the Er3+ luminescence was controlled by appropriate heat-treatment of the samples. Enhancement up to 700% was obtained for the upconverted emissions at 527, 550, and 660 nm, when a laser at 980 nm is used for excitation. Since the laser frequency is far from the NPs surface plasmon resonance frequency, the luminescence enhancement is attributed to the local field increase in the proximity of the NPs and not to energy transfer from the NPs to the emitters as is usually reported. This is the first time that the effect is investigated for tellurite-tungstate-bismutate glasses and the enhancement observed is the largest reported for a tellurium oxide based glass. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754468]
Resumo:
Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.
Resumo:
Composites formed of a polymer-embedded layer of sub-10 nm gold nanoclusters were fabricated by very low energy (49 eV) gold ion implantation into polymethylmethacrylate. We used small angle x-ray scattering to investigate the structural properties of these metal-polymer composite layers that were fabricated at three different ion doses, both in their original form (as-implanted) and after annealing for 6 h well above the polymer glass transition temperature (150 degrees C). We show that annealing provides a simple means for modification of the structure of the composite by coarsening mechanisms, and thereby changes its properties. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720464]
Resumo:
Electrospinning is used to produce fibers in the nanometer range by stretching a polymeric jet using electric fields of high magnitude. Chitosan is an abundant natural polymer that can be used to obtain biocompatible nanostructured membranes. The objectives of this work were to obtain nanostructured membranes based on blends of chitosan and polyoxyethylene (PEO), and evaluate their thermal and morphological properties, as well as their in vitro biocompatibility by agar diffusion cytotoxicity tests for three different cell lines. A nanostructured fibrous membrane with fiber diameters in the order of 200 nm was obtained, which presented a rough surface and thickness ranging from one to two millimeters. The results of the cytotoxicity tests evidenced that the chitosan/PEO membranes are non-toxic to the cells studied in this work. Further, the electrospinning technique was effective in obtaining nanostructured chitosan/PEO membranes, which showed biocompatibility according to in vitro preliminary tests using the cell lines.
Resumo:
In this work, the synthetic hydroxyapatite (HAP) was studied using different preparation routes to decrease the crystal size and to study the temperature effect on the HAP nano-sized hydroxyapatite crystallization. X-ray diffraction (XRD) analysis indicated that all samples were composed by crystalline and amorphous phases . The sample with greater quantity of amorphous phase (40% of total mass) was studied. The nano-sized hydroxyapatite powder was heated and studied at 300, 500, 700, 900 and 1150 °C. All samples were characterized by XRD and their XRD patterns refined using the Rietveld method. The crystallites presented an anisotropic form, being larger in the [001] direction. It was observed that the crystallite size increased continuously with the heating temperature and the eccentricity of the ellipsoidal shape changed from 2.75 at 300 °C to 1.94, 1.43, 1.04 and 1.00 respectively at 500, 700, 900 and 1150 °C. In order to better characterize the morphology of the HAP the samples were also examined using atomic force microscopy (AFM), infrared spectrometry (IR) and thermogravimetric analysis (TGA).