925 resultados para NaHCO(3) intake
Resumo:
The purpose of this thesis was to investigate the association between parent acculturation and parental fruit and vegetable intake, child fruit and vegetable intake, and child access and availability to fruits and vegetables. Secondary data analysis was performed on a convenience sample of low-income Hispanic-identifying parents (n = 177) and children from a baseline survey from the Sprouting Healthy Kids intervention. T tests were used to examine the association between parent acculturation status (acculturated or non-acculturated) and fruit intake, vegetable intake and combined fruit and vegetable intake of both the parent and the child. T tests were also used to determine the relationship between parent acculturation and child access and availability to fruits, vegetables, and combined fruits and vegetables. Statistical significance was set at a p level of 0.05. The mean FVI for the parents and children were 3.41 servings and 2.96 servings, respectively. Statistical significance was found for the relationships between parent acculturation and parent fruit intake and parent acculturation and child fruit access. Lower acculturation of the parent was significantly related to higher fruit intake. Counter to the hypothesis, higher acculturation was found to be associated with greater access to fruits for the child. These findings suggest the necessity for not only culturally specific nutrition interventions, but the need for interventions to target behaviors for specific levels of acculturation within a culture. ^
Resumo:
Coronary heart disease (CHD) is the leading cause of death in women and rates markedly increase among women after 65 years of age. C-reactive protein (CRP) is a new clinical indicator of atherosclerotic-related inflammation with a direct pathogenic role. Studies show lifestyle factors can modulate CRP. Omega-3 fatty acids have anti-inflammatory properties and studies suggest that eating fish high in omega-3 fatty acids may lower CHD risk in women. This study sought to assess the possible role of omega-3 fatty acids in the reduction of CHD-related inflammation by investigating the effect of fish consumption on CRP levels. Methods. Twenty-four healthy postmenopausal women were randomly assigned to a fish group (usual diet plus two servings per week of enriched fish) or control group (usual diet with no fatty fish) for eight weeks. Omega-3 fatty acid-enriched fish developed by the West Virginia University Aquaculture Division was used. Serum CRP, serum interleukin-6 (IL-6), and the fatty acid content of red blood cells (RBC) were measured before and after the study. Women also completed food records. RESULTS: Baseline levels of CRP were low (85% of the fish group had normal levels) and few changes in CRP risk category were observed. Mean IL-6 levels were reduced by 27% and 35% in the fish and control groups, respectively (p for between-group difference = 0.60). Changes in RBC fatty acid composition were not statistically significant. Compared to control women, women in the fish group had greater reductions in mean triglycerides (p = 0.08), total cholesterol (P = 0.04), and LDL cholesterol levels (p = 0.06). Baseline dietary intake of total and monounsaturated fatty acids tended to be positively associated with baseline CRP, while vitamin E intake was inversely related. Saturated fat intake tended to have a positive association with IL-6. Conclusions. Findings regarding the effect of two servings of fish on CRP and IL-6 levels are inconclusive due to low baseline levels of CRP and IL-6. However, results indicate two servings of fatty fish have favorable effects on blood lipids. The relationship of dietary components with CRP and IL-6 is complex and further research is needed to determine the varying roles of diet on the inflammatory process. ^
Resumo:
We assessed the relationship between exposure to organohalogen polluted minke whale (Balaenoptera acutorostrata) blubber and liver morphology and function in a generational controlled study of 28 Greenland sledge dogs (Canis familiaris). The prevalence of portal fibrosis, mild bile duct hyperplasia, and vascular leukocyte infiltrations was significantly higher in the exposed group (all Chi-square: p<0.05). In case of granulomas, the frequency was significantly highest in the bitches (P generation) while the prevalence of portal fibrosis was highest in the F generation (pups) (both Chi-square: p<0.05). No significant difference between exposed and controls was found for bile acid, ALAT, and ALKP, while ASAT and LDH were significantly highest in the control group (both ANOVA: p<0.05). We therefore suggest that a daily intake of 50-200 g environmentally organohalogen polluted minke whale blubber can cause liver lesions in Greenland sledge dogs. It is reasonable to infer that other apex predators such as polar bears (Ursus maritimus) and humans may suffer from similar impacts.
Resumo:
The aim of this study was to determine the effect of animal management and farm facilities on total feed intake (TFI), feed conversion ratio (FCR) and mortality rate (MORT) of grower-finishing pigs. In total, 310 batches from 244 grower-finishing farms, consisting of 454 855 Pietrain sired pigs in six Spanish pig companies were used. Data collection consisted of a survey on management practices (season of placement, split-sex by pens, number of pig origins, water source in the farm, initial or final BW) and facilities (floor, feeder, ventilation or number of animals placed) during 2008 and 2009. Results indicated that batches of pigs placed between January and March had higher TFI (P=0.006), FCR (P=0.005) and MORT (P=0.03) than those placed between July and September. Moreover, batches of pigs placed between April and June had lower MORT (P=0.003) than those placed between January and March. Batches which had split-sex pens had lower TFI (P=0.001) and better FCR (P<0.001) than those with mixed-sex in pens; pigs fed with a single-space feeder with incorporated drinker also had the lowest TFI (P<0.001) and best FCR (P<0.001) in comparison to single and multi-space feeders without a drinker. Pigs placed in pens with <50% slatted floors presented an improvement in FCR (P<0.05) than pens with 50% or more slatted floors. Batches filled with pigs from multiple origins had higher MORT (P<0.001) than those from a single origin. Pigs housed in barns that performed manual ventilation control presented higher MORT (P<0.001) in comparison to automatic ventilation. The regression analysis also indicated that pigs which entered to grower-finisher facilities with higher initial BW had lower MORT (P<0.05) and finally pigs which were sent to slaughterhouse with a higher final BW presented higher TFI (P<0.001). The variables selected for each dependent variable explained 61.9%, 24.8% and 20.4% of the total variability for TFI, FCR and MORT, respectively. This study indicates that farms can increase growth performance and reduce mortality by improving farm facilities and/or modifying management practices.
Resumo:
The present study aimed to investigate the relationships between macronutrient intake and serum lipid profile in adolescents from eight European cities participating in the HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) cross-sectional study (2006–7), and to assess the role of body fat-related variables in these associations. Weight, height, waist circumference, skinfold thicknesses, total choles- terol, HDL-cholesterol (HDL-C), LDL-cholesterol, TAG, apoB and apoA1 were measured in 454 adolescents (44 % boys) aged 12·5–17·5 years. Macronutrient intake (g/4180 kJ per d (1000 kcal per d)) was assessed using two non-consecutive 24 h dietary recalls. Associations were evaluated by multi-level analysis and adjusted for sex, age, maternal education, centre, sum of four skinfolds, moderate-to-vigorous.
Resumo:
Soccer participation worldwide is increasing and every club try to discover new talents. It is well know that there is an important correlation between body composition (BC) and talent detection (TD) and when coaches and selectors choose players, they tend to choose them with optimum BC.
Resumo:
La diabetes comprende un conjunto de enfermedades metabólicas que se caracterizan por concentraciones de glucosa en sangre anormalmente altas. En el caso de la diabetes tipo 1 (T1D, por sus siglas en inglés), esta situación es debida a una ausencia total de secreción endógena de insulina, lo que impide a la mayoría de tejidos usar la glucosa. En tales circunstancias, se hace necesario el suministro exógeno de insulina para preservar la vida del paciente; no obstante, siempre con la precaución de evitar caídas agudas de la glucemia por debajo de los niveles recomendados de seguridad. Además de la administración de insulina, las ingestas y la actividad física son factores fundamentales que influyen en la homeostasis de la glucosa. En consecuencia, una gestión apropiada de la T1D debería incorporar estos dos fenómenos fisiológicos, en base a una identificación y un modelado apropiado de los mismos y de sus sorrespondientes efectos en el balance glucosa-insulina. En particular, los sistemas de páncreas artificial –ideados para llevar a cabo un control automático de los niveles de glucemia del paciente– podrían beneficiarse de la integración de esta clase de información. La primera parte de esta tesis doctoral cubre la caracterización del efecto agudo de la actividad física en los perfiles de glucosa. Con este objetivo se ha llevado a cabo una revisión sistemática de la literatura y meta-análisis que determinen las respuestas ante varias modalidades de ejercicio para pacientes con T1D, abordando esta caracterización mediante unas magnitudes que cuantifican las tasas de cambio en la glucemia a lo largo del tiempo. Por otro lado, una identificación fiable de los periodos con actividad física es un requisito imprescindible para poder proveer de esa información a los sistemas de páncreas artificial en condiciones libres y ambulatorias. Por esta razón, la segunda parte de esta tesis está enfocada a la propuesta y evaluación de un sistema automático diseñado para reconocer periodos de actividad física, clasificando su nivel de intensidad (ligera, moderada o vigorosa); así como, en el caso de periodos vigorosos, identificando también la modalidad de ejercicio (aeróbica, mixta o de fuerza). En este sentido, ambos aspectos tienen una influencia específica en el mecanismo metabólico que suministra la energía para llevar a cabo el ejercicio y, por tanto, en las respuestas glucémicas en T1D. En este trabajo se aplican varias combinaciones de técnicas de aprendizaje máquina y reconocimiento de patrones sobre la fusión multimodal de señales de acelerometría y ritmo cardíaco, las cuales describen tanto aspectos mecánicos del movimiento como la respuesta fisiológica del sistema cardiovascular ante el ejercicio. Después del reconocimiento de patrones se incorpora también un módulo de filtrado temporal para sacar partido a la considerable coherencia temporal presente en los datos, una redundancia que se origina en el hecho de que en la práctica, las tendencias en cuanto a actividad física suelen mantenerse estables a lo largo de cierto tiempo, sin fluctuaciones rápidas y repetitivas. El tercer bloque de esta tesis doctoral aborda el tema de las ingestas en el ámbito de la T1D. En concreto, se propone una serie de modelos compartimentales y se evalúan éstos en función de su capacidad para describir matemáticamente el efecto remoto de las concetraciones plasmáticas de insulina exógena sobre las tasas de eleiminación de la glucosa atribuible a la ingesta; un aspecto hasta ahora no incorporado en los principales modelos de paciente para T1D existentes en la literatura. Los datos aquí utilizados se obtuvieron gracias a un experimento realizado por el Institute of Metabolic Science (Universidad de Cambridge, Reino Unido) con 16 pacientes jóvenes. En el experimento, de tipo ‘clamp’ con objetivo variable, se replicaron los perfiles individuales de glucosa, según lo observado durante una visita preliminar tras la ingesta de una cena con o bien alta carga glucémica, o bien baja. Los seis modelos mecanísticos evaluados constaban de: a) submodelos de doble compartimento para las masas de trazadores de glucosa, b) un submodelo de único compartimento para reflejar el efecto remoto de la insulina, c) dos tipos de activación de este mismo efecto remoto (bien lineal, bien con un punto de corte), y d) diversas condiciones iniciales. ABSTRACT Diabetes encompasses a series of metabolic diseases characterized by abnormally high blood glucose concentrations. In the case of type 1 diabetes (T1D), this situation is caused by a total absence of endogenous insulin secretion, which impedes the use of glucose by most tissues. In these circumstances, exogenous insulin supplies are necessary to maintain patient’s life; although caution is always needed to avoid acute decays in glycaemia below safe levels. In addition to insulin administrations, meal intakes and physical activity are fundamental factors influencing glucose homoeostasis. Consequently, a successful management of T1D should incorporate these two physiological phenomena, based on an appropriate identification and modelling of these events and their corresponding effect on the glucose-insulin balance. In particular, artificial pancreas systems –designed to perform an automated control of patient’s glycaemia levels– may benefit from the integration of this type of information. The first part of this PhD thesis covers the characterization of the acute effect of physical activity on glucose profiles. With this aim, a systematic review of literature and metaanalyses are conduced to determine responses to various exercise modalities in patients with T1D, assessed via rates-of-change magnitudes to quantify temporal variations in glycaemia. On the other hand, a reliable identification of physical activity periods is an essential prerequisite to feed artificial pancreas systems with information concerning exercise in ambulatory, free-living conditions. For this reason, the second part of this thesis focuses on the proposal and evaluation of an automatic system devised to recognize physical activity, classifying its intensity level (light, moderate or vigorous) and for vigorous periods, identifying also its exercise modality (aerobic, mixed or resistance); since both aspects have a distinctive influence on the predominant metabolic pathway involved in fuelling exercise, and therefore, in the glycaemic responses in T1D. Various combinations of machine learning and pattern recognition techniques are applied on the fusion of multi-modal signal sources, namely: accelerometry and heart rate measurements, which describe both mechanical aspects of movement and the physiological response of the cardiovascular system to exercise. An additional temporal filtering module is incorporated after recognition in order to exploit the considerable temporal coherence (i.e. redundancy) present in data, which stems from the fact that in practice, physical activity trends are often maintained stable along time, instead of fluctuating rapid and repeatedly. The third block of this PhD thesis addresses meal intakes in the context of T1D. In particular, a number of compartmental models are proposed and compared in terms of their ability to describe mathematically the remote effect of exogenous plasma insulin concentrations on the disposal rates of meal-attributable glucose, an aspect which had not yet been incorporated to the prevailing T1D patient models in literature. Data were acquired in an experiment conduced at the Institute of Metabolic Science (University of Cambridge, UK) on 16 young patients. A variable-target glucose clamp replicated their individual glucose profiles, observed during a preliminary visit after ingesting either a high glycaemic-load or a low glycaemic-load evening meal. The six mechanistic models under evaluation here comprised: a) two-compartmental submodels for glucose tracer masses, b) a single-compartmental submodel for insulin’s remote effect, c) two types of activations for this remote effect (either linear or with a ‘cut-off’ point), and d) diverse forms of initial conditions.
Resumo:
One hundred and twenty seven rabbit does were fed ad libitum from rearing until 2nd weaning, two isofibrous, isoenergetic and isoproteic diets supplemented with two different fat sources: 3% lard for diet C (control) or 6% of a supplement (Optomega-50; Optivite International Ltd., España) containing a 50% of ether extract and 38% of n-3 polyunsaturated fatty acids for diet P (PUFA n-3). Does were inseminated at 4.5 months of age and then, at 32 days after the first parturition. Fertility and prolificacy were determined. Blood samples were obtained in 12 does of each group at -7, 0, 7, 14, 21 and 28 days of pregnancy to determine plasma progesterone. In addition, 10 litters from each group with 10-11 kits, one day old, were measured determining their length, and their biparietal and thoracic diameters. Feed intake and prolificacy were similar in both groups. Supplementation with PUFA n-3 improved fertility at second AI. Progesterone concentrations on day 7 and 14 of pregnancy in PUFA does, and the size of their kits at birth were also increased.
Resumo:
Leptin is a circulating protein involved in the long-term regulation of food intake and body weight. Cholecystokinin (CCK) is released postprandially and elicits satiety signals. We investigated the interaction between leptin and CCK-8 in the short-term regulation of food intake induced by 24-hr fasting in lean mice. Leptin, injected intraperitoneally (i.p.) at low doses (4–120 μg/kg), which did not influence feeding behavior for the first 3 hr postinjection, decreased food intake dose dependently by 47–83% during the first hour when coinjected with a subthreshold dose of CCK. Such an interaction was not observed between leptin and bombesin. The food-reducing effect of leptin injected with CCK was not associated with alterations in gastric emptying or locomotor behavior. Leptin–CCK action was blocked by systemic capsaicin at a dose inducing functional ablation of sensory afferent fibers and by devazepide, a CCK-A receptor antagonist but not by the CCK-B receptor antagonist, L-365,260. The decrease in food intake which occurs 5 hr after i.p. injection of leptin alone was also blunted by devazepide. Coinjection of leptin and CCK enhanced the number of Fos-positive cells in the hypothalamic paraventricular nucleus by 60%, whereas leptin or CCK alone did not modify Fos expression. These results indicate the existence of a functional synergistic interaction between leptin and CCK leading to early suppression of food intake which involves CCK-A receptors and capsaicin-sensitive afferent fibers.
Resumo:
Omega−3 polyunsaturated fatty acids (PUFAs) are essential components required for normal cellular function and have been shown to exert many preventive and therapeutic actions. The amount of n−3 PUFAs is insufficient in most Western people, whereas the level of n−6 PUFAs is relatively too high, with an n−6/n−3 ratio of >18. These two classes of PUFAs are metabolically and functionally distinct and often have important opposing physiological functions; their balance is important for homeostasis and normal development. Elevating tissue concentrations of n−3 PUFAs in mammals relies on chronic dietary intake of fat rich in n−3 PUFAs, because mammalian cells lack enzymatic activities necessary either to synthesize the precursor of n−3 PUFAs or to convert n−6 to n−3 PUFAs. Here we report that adenovirus-mediated introduction of the Caenorhabditis elegans fat-1 gene encoding an n−3 fatty acid desaturase into mammalian cells can quickly and effectively elevate the cellular n−3 PUFA contents and dramatically balance the ratio of n−6/n−3 PUFAs. Heterologous expression of the fat-1 gene in rat cardiac myocytes rendered cells capable of converting various n−6 PUFAs to the corresponding n−3 PUFAs, and changed the n−6/n−3 ratio from about 15:1 to 1:1. In addition, an eicosanoid derived from n−6 PUFA (i.e., arachidonic acid) was reduced significantly in the transgenic cells. This study demonstrates an effective approach to modifying fatty acid composition of mammalian cells and also provides a basis for potential applications of this gene transfer in experimental and clinical settings.
Resumo:
The possibility of premigratory modulation in gastric digestive performance was investigated in a long-distance migrant, the eastern curlew (Numenius madagascariensis), in eastern Australia. The rate of intake in the curlews was limited by the rate of digestion but not by food availability. It was hypothesized that before migration, eastern curlews would meet the increased energy demand by increasing energy consumption. It was predicted that (1) an increase in the rate of intake and the corresponding rate of gastric throughput would occur or (2) the gastric digestive efficiency would increase between the mid-nonbreeding and premigratory periods. Neither crude intake rate (the rate of intake calculated including inactive pauses; 0.22 g DM [grams dry mass] or 3.09 kJ min(-1)) nor the rate of gastric throughput (0.15 g DM or 2.85 kJ min(-1)) changed over time. Gastric digestive efficiency did not improve between the periods (91%) nor did the estimated overall energy assimilation efficiency (63% and 58%, respectively). It was concluded that the crustacean-dominated diet of the birds is processed at its highest rate and efficiency throughout a season. It appears that without a qualitative shift in diet, no increase in intake rate is possible. Accepting these findings at their face value poses the question of how and over what time period the eastern curlews store the nutrients necessary for the ensuing long, northward nonstop flight.
Resumo:
Eastern curlews Numenius madagascariensis spending the nonbreeding season in eastern Australia foraged on three intertidal decapods: soldier crab Mictyris longicarpus, sentinel crab Macrophthalmus crassipes and ghost-shrimp Trypaea australiensis. Due to their ecology, these crustaceans were spatially segregated (=distributed in 'patches') and the curlews intermittently consumed more than one prey type. It was predicted that if the curlews behaved as intake rate maximizers, the time spent foraging on a particular prey (patch) would reflect relative availabilities of the prey types and thus prey-specific intake rates would be equal. During the mid-nonbreeding period (November-December), Mictyris and Macrophthalmus were primarily consumed and prey-specific intake rates were statistically indistinguishable (8.8 versus 10.1 kJ x min(-1)). Prior to migration (February), Mictyris and Trypaea were hunted and the respective intake rates were significantly different (8.9 versus 2.3 kJ x min(-1)). Time allocation to Trypaea-hunting was independent of the availability of Mictyris. Thus, consumption of Trypaea depressed the overall intake rate. Six hypotheses for consuming Trypaea before migration were examined. Five hypotheses: the possible error by the predator, prey specialization, observer overestimation of time spent hunting Trypaea, supplementary prey and the choice of higher quality prey due to a digestive bottleneck, were deemed unsatisfactory. The explanation for consumption of a low intake-rate but high quality prey (Trypaea) deemed plausible was diet optimisation by the Curlews in response to the pre-migratory modulation (decrease in size/processing capacity) of their digestive system. With a seasonal decrease in the average intake rate, the estimated intake per low tide increased from 1233 to 1508 kJ between the mid-nonbreeding and pre-migratory periods by increasing the overall time spent on the sandflats and the proportion of time spent foraging.
Resumo:
Background and Objective: Estimates of dietary folate intake are currently of considerable interest, but no rapid tools are available to assess dietary intake of folate that are well suited to everyday health promotion activities, We developed and tested the reliability and validity of two prototypes of a rapid dietary assessment tool (a folate intake tool, FIT) to determine dietary intake of folate. Study Design and Setting: Five hundred and sixty eight men and women aged 33-93 years from Perth, Western Australia. Completed one of the two prototypes of the tool and gave a fasting blood sample for measurement of serum folate. A subset (n - 277) of participants completed the same tool on a second occasion 3-6 weeks later. Results: The Pearson correlations (r) between folate score from the tool and serum folate were moderately high for both prototypes (FIT-A r = 0.54-, FIT-B r = 0.49). The folate scores for the two prototypes were similar on repeat testing and correlated strongly (FIT-A r = 0.75; FIT-B r = 0.68). Conclusions: The rapid dietary assessment tool described here, FIT, provides a valid and reliable measurement of dietary intake of folate for both men and women. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Purpose: This study investigated leukocyte subset responses to moderate-intensity exercise under heat stress, with water (W) or carbohydrate (CHO) drink ingestion. Methods: In repeated trials, 13 soldiers consumed either a W or CHO drink during 3 h of walking at 4.4 km center dot h(-1) with a 5% gradient (15 min rest per hour) under heat stress (35 C and 55% relative humidity). The soldiers wore combat uniforms and carried water bottles and dummy rifles and ammunition, altogether weighing about 11.5 +/- 1.0 kg. Results: Plasma glucose concentration was significantly higher with CHO than W ingestion during exercise (p < 0.01). There were no significant differences between W and CHO conditions in exercise performance, plasma cortisol concentration, heart rate, or core temperature. CHO ingestion significantly moderated the increases in leukocyte (83% in W, 28% in CHO; p < 0.001), monocyte (60% in W, 34% in CHO; p < 0.05), and granulocyte counts (120% in W, 30% in CHO; p < 0.001), but not in lymphocyte count (41% in W, 25% in CHO). Conclusions: The increases in leukocyte and subset counts during moderate-intensity exercise under heat stress may be comparable to those observed during intense exercise in cool conditions. The response of immune cell counts is blunted by CHO intake during moderate-intensity exercise in the heat, and may not occur through the cortisol pathway.
Resumo:
Rates of food intake in animals consuming abundant prey can be constrained by the rates of digestion or excretion of ingested substances, such as salt, particularly so in the animals that regularly migrate between freshwater and saltwater environments. We tested this hypothesis in a long-distance migrant shorebird, the eastern curlew Numenius madagascariensis (suborder Charadrii), foraging on intertidal decapods in eastern Australia. We predicted that if food intake rates are constrained osmotically, individuals with access to freshwater and less saline prey (FW group) would have higher rates of food and water intake than individuals with seawater-only access (SW group). Food intake rates did not differ between the FW and SW groups (0.14 g ash-free dry mass min(-1)), nor did the water influx rates (0.75 g min(-1)). Salt intake rates were lower at FW sites (19.3 versus 23.3 mg NaCl min(-1)) and overall they were similar to those of marine birds. Food intake rate in the eastern curlew appeared limited by digestive rather than by osmoregulatory capacity.