517 resultados para NADPH oxidade
Resumo:
Bioenergetic analysis may be applied in order to predict microbial growth yields, based on the Gibbs energy dissipation and mass conservation principles of the overall growth reaction. The bioenergetics of the photoautotrophic growth of the cyanobacterium Arthrospira (Spirulina) platensis was investigated in different bioreactor configurations (tubular photobioreactor and open ponds) using different nitrogen sources (nitrate and urea) and under different light intensity conditions to determine the best growing conditions in terms of Gibbs energy dissipation, number of photons to sustain cell growth and phototrophic energy yields distribution in relation to the ATP and NADPH formation, and release of heat. Although an increase in the light intensity increased the Gibbs energy dissipated for cell growth and maintenance with both nitrogen sources, it did not exert any appreciable influence on the moles of photons absorbed by the system to produce one C-mol biomass. On the other hand, both bioenergetic parameters were higher in cultures with nitrate than with urea, likely because of the higher energy requirements needed to reduce the former nitrogen source to ammonia. They appreciably increased also when open ponds were substituted by the tubular photobioreactor, where a more efficient light distribution ensured a remarkably higher cell mass concentration. The estimated percentages of the energy absorbed by the cell showed that, compared with nitrate, the use of urea as nitrogen source allowed the system to address higher energy fractions to ATP production and light fixation by the photosynthetic apparatus, as well as a lower fraction released as heat. The best energy yields values on Gibbs energy necessary for cell growth and maintenance were achieved in up to 4-5 days of cultivation, indicating that it would be the optimum range to maintain cell growth. Thanks to this better bioenergetic situation, urea appears to be a quite promising low-cost, alternative nitrogen source for Arthrospira platensis cultures in photobioreactors. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
de Oliveira Alvim R, Lima Santos PCJ, Goncalves Dias R, Rodrigues MV, de Sa Cunha R, Mill JG, Junior WN, Krieger JE, Pereira AC. Association between the C242T polymorphism in the p22phox gene with arterial stiffness in the Brazilian population. Physiol Genomics 44: 587-592, 2012. First published April 10, 2012; doi:10.1152/physiolgenomics.00122.2011.-NADPH oxidase p22phox subunit is responsible for the production of reactive oxygen species in the vascular tissue. The C242T polymorphism in the p22phox gene has been associated with diverse coronary artery disease phenotypes, but the findings about the protective or harmful effects of the T allele are still controversial. Our main aim was to assess the effect of p22phox C242T genotypes on arterial stiffness, a predictor of late morbidity and mortality, in individuals from the general population. We randomly selected 1,178 individuals from the general population of Vitoria City, Brazil. Genotypes for the C242T polymorphism were detected by PCR-RFLP, and pulse wave velocity (PWV) values were measured with a noninvasive automatic device Complior. p22phox and TNF-alpha gene expression were quantified by real-time PCR in human arterial mammary smooth muscle cells. In both the entire and nonhypertensive groups: individuals carrying the TT genotype had higher PWV values and higher risk for increased arterial stiffness [odds ratio (OR) 1.93, 95% confidence interval (CI) 1.27-2.92 and OR 1.78, 95% CI 1.07-2.95, respectively] compared with individuals carrying CC + CT genotypes, even after adjustment for covariates. No difference in the p22phox gene expression according C242T genotypes was observed. However, TNF-alpha gene expression was higher in cells from individual carrying the T allele, suggesting that this genetic marker is associated with functional phenotypes at the gene expression level. In conclusion, we suggest that p22phox C242T polymorphism is associated with arterial stiffness evaluated by PWV in the general population. This genetic association shed light on the understanding of the genetic modulation on vascular dysfunction mediated by NADPH oxidase.
Resumo:
The objective of this study was to evaluate the effects of caloric restriction (CR) on myenteric neurons in the duodenum of Wistar rats during aging. Thirty rats were divided into three groups: the C group (six-month-old animals that were fed a normal diet from weaning until six months of age), the SR group (18-month-old animals that were fed a normal diet from weaning until 18 months of age) and the CR group (18-month-old animals that were fed a 30% CR diet after six months of age). After 12 months, the animals were euthanized. Whole-mount preparations of the duodenums were either stained with Giemsa or underwent NADPH-diaphorase histochemistry to determine the general myenteric neuron population and the nitrergic neuron subpopulation (NADPH-d +), respectively. The NADPH-d-negative (NADPH-d -) neuron population was estimated based on the difference between the Giemsa-stained and NADPH-d + neurons. The neurons were counted, and the cell body areas were measured. Aging was associated with neuronal loss in the SR group, which was minimized by caloric restriction in the CR group. The density (mm(2)) of the Giemsa-stained neurons was higher in the SR group (79.09 +/- 6.25) than in the CR (92.37 +/- 11.6) and C (111.68 +/- 15.26) groups. The density of the NADPH-d + neurons was higher in the SR group (44.90 +/- 5.88) than in the C (35.75 +/- 1.6) and RC (39.14 +/- 7.02) groups. The density of NADPH-d - neurons was higher in the CR (49.73 +/- 12.08) and C (75.64 +/- 17.05) groups than in the SR group (33.82 +/- 4.5). In the C group, 32% and 68% of the Giemsa-stained myenteric neurons were NADPH-d + or NADPH-d -, respectively. With aging (SR group), the percentage of nitrergic neurons (56.77%) increased, whereas the percentage of NADPH-d - neurons (43.22%) decreased. In the CR group, the change in the percentage of nitrergic (42.37%) and NADPH-d - (57.62%) neurons was lower. As NADPH-d - neurons will be mostly cholinergic neurons, CR appears to reduce the loss of cholinergic neurons during aging. The cell body dimensions (mu m(2)) were not altered by aging or CR. Thus. CR had a protective effect on myenteric neurons during aging. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We investigated the effects of viable, extended freeze-drying (EFD) or heat-killed (HK) Mycobacterium bovis bacillus CalmetteGuerin (BCG) in respiratory burst activity, gene expression of CYBB and NCF1 encoding components of the human phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase, TLR2 expression, and in IL-10 and TNF-a cytokine production by human peripheral blood mononuclear cells (PBMCs). Viable BCG significantly inhibited TLR2 and CYBB gene expression, as well as superoxide release by human PBMC. All BCG stimuli augmented IL-10 release, but only HK BCG or viable BCG increased TNF-a release by PBMCs. Our studies show that viable BCG can impair the NADPH oxidase system activation and the TLR2 route in human PBMCs. As well, different BCG preparations can distinctly influence cytokine production by human PBMCs.
Resumo:
Objective: Enhanced sodium intake increases volume overload, oxidative stress and production of proinflammatory cytokines. In animal models, increased sodium intake favours ventricular dysfunction after myocardial infarction (MI). The aim of this study was to investigate, in human subjects presenting with ST-segment elevation MI (STEMI), the impact of sodium intake prior the coronary event. Methods: Consecutive patients (n = 372) admitted within the first 24 h of STEMI were classified by a food intake questionnaire as having a chronic daily intake of sodium higher (HS) or lower (LS) than 1.2 g in the last 90 days before MI. Plasma levels of 8-isoprostane, interleucin-2 (IL-2), tumour necrosis factor type alpha (TNF-alpha), C-reactive protein (CRP) and brain natriuretic peptide (BNP) were measured at admission and at the fifth day. Magnetic resonance imaging was performed immediately after discharge. Total mortality and recurrence of acute coronary events were investigated over 4 years of follow-up. Results: The decrease of 8-isoprostane was more prominent and the increase of IL-2, TNF-alpha and CRP less intense during the first 5 days in LS than in HS patients (p < 0.05). Sodium intake correlated with change in plasma BNP between admission and fifth day (r = 0.46; p < 0.0001). End-diastolic volumes of left atrium and left ventricle were greater in HS than in LS patients (p < 0.05). In the first 30 days after MI and up to 4 years afterwards, total mortality was higher in HS than in LS patients (p < 0.05). Conclusion: Excessive sodium intake increases oxidative stress, inflammatory response, myocardial stretching and dilatation, and short and long-term mortality after STEMI. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx). Methods: Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography. Results: Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44 kDa (SDS-PAGE)/46 kDa (exclusion chromatography) protein that appears as a 22 kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56-4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622 kDa/5.18. Vu-2-Cys-Prx has 8% alpha-helix, 39% beta-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys(52) residue and the amino acids Pro(45), Thr(49) and Arg(128) are conserved as in other 2-Cys-Prx. General significance: The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE Phagocyte function is critical for host defense against infections. Defects in phagocytic function lead to several primary immunodeficiencies characterized by early onset of recurrent and severe infections. In this work, we further investigated the effects of BAY 41-2272, a soluble guanylate cyclase (sGC) agonist, on the activation of human peripheral blood monocytes (PBM) and THP-1 cells. EXPERIMENTAL APPROACH THP-1 cells and PBM viability was evaluated by methylthiazoletetrazolium assay; reactive oxygen species production by lucigenin chemiluminescence; gene and protein expression of NAPDH oxidase components by qRT-PCR and Western blot analysis, respectively; phagocytosis and microbicidal activity by co-incubation, respectively, with zymosan and Escherichia coli; and cytokine release by elisa. KEY RESULTS BAY 41-2272, compared with the untreated group, increased spreading of monocytes by at least 35%, superoxide production by at least 50%, and gp91PHOX and p67PHOX gene expression 20 to 40 times, in both PBM and THP-1 cells. BAY 41-2272 also augmented phagocytosis of zymosan particles threefold compared with control, doubled microbicidal activity against E. coli and enhanced the release of TNF-a and IL-12p70 by both PBM and THP-1 cells. Finally, by inhibiting sGC with ODQ, we showed that BAY 41-2272-induced superoxide production and phagocytosis is not dependent exclusively on sGC activation. CONCLUSIONS AND IMPLICATIONS In addition to its ability to induce vasorelaxation and its potential application for therapy of vascular diseases, BAY 41-2272 was shown to activate human mononuclear phagocytes. Hence, it is a novel pro-inflammatory drug that may be useful for controlling infections in the immunocompromised host.
Resumo:
Abstract Introduction Several studies link hematological dysfunction to severity of sepsis. Previously we showed that platelet-derived microparticles from septic patients induce vascular cell apoptosis through the NADPH oxidase-dependent release of superoxide. We sought to further characterize the microparticle-dependent vascular injury pathway. Methods During septic shock there is increased generation of thrombin, TNF-α and nitric oxide (NO). Human platelets were exposed for 1 hour to the NO donor diethylamine-NONOate (0.5 μM), lipopolysaccharide (LPS; 100 ng/ml), TNF-α (40 ng/ml), or thrombin (5 IU/ml). Microparticles were recovered through filtration and ultracentrifugation and analyzed by electron microscopy, flow cytometry or Western blotting for protein identification. Redox activity was characterized by lucigenin (5 μM) or coelenterazine (5 μM) luminescence and by 4,5-diaminofluorescein (10 mM) and 2',7'-dichlorofluorescein (10 mM) fluorescence. Endothelial cell apoptosis was detected by phosphatidylserine exposure and by measurement of caspase-3 activity with an enzyme-linked immunoassay. Results Size, morphology, high exposure of the tetraspanins CD9, CD63, and CD81, together with low phosphatidylserine, showed that platelets exposed to NONOate and LPS, but not to TNF-α or thrombin, generate microparticles similar to those recovered from septic patients, and characterize them as exosomes. Luminescence and fluorescence studies, and the use of specific inhibitors, revealed concomitant superoxide and NO generation. Western blots showed the presence of NO synthase II (but not isoforms I or III) and of the NADPH oxidase subunits p22phox, protein disulfide isomerase and Nox. Endothelial cells exposed to the exosomes underwent apoptosis and caspase-3 activation, which were inhibited by NO synthase inhibitors or by a superoxide dismutase mimetic and totally blocked by urate (1 mM), suggesting a role for the peroxynitrite radical. None of these redox properties and proapoptotic effects was evident in microparticles recovered from platelets exposed to thrombin or TNF-α. Conclusion We showed that, in sepsis, NO and bacterial elements are responsible for type-specific platelet-derived exosome generation. Those exosomes have an active role in vascular signaling as redox-active particles that can induce endothelial cell caspase-3 activation and apoptosis by generating superoxide, NO and peroxynitrite. Thus, exosomes must be considered for further developments in understanding and treating vascular dysfunction in sepsis.
Resumo:
Background Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are expressed in kidney and require association with subunit p22phox (encoded by the CYBA gene). Increased expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction, glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O2•- (-675 T → A in CYBA, unregistered) and in glutathione metabolism (-129 C → T in GCLC [rs17883901] and -65 T → C in GPX3 [rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients. Methods 401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in Renal Disease (MDRD) equation: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m2 (n = 136) and were genotyped. Results No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects. The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying CYBA genotypes T/A+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60 mL/min was significantly higher in the group of patients carrying GCLC genotypes C/T+T/T (47.1%) than in the group carrying the C/C genotype (31.1%) (p = 0.0082). Logistic regression analysis identified the presence of at least one A allele of the CYBA SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95% 0.14-0.88, p = 0.0354) and the presence of at least one T allele of the GCLC rs17883901 SNP as an independent risk factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, p = 0.0068). Conclusions The functional SNPs CYBA -675 T → A and GCLC rs17883901, probably associated with cellular redox imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require validation in additional cohorts.
Resumo:
Protein disulfide isomerase (PDI) and its homologs are oxidoreductases facilitating protein folding in the ER. Endo-PDI (also termed ERp46) is highly expressed in endothelial cells. It belongs to the PDI family but its physiological function is largely unknown. We studied the role of Endo-PDI in endothelial angiogenic responses. Stimulation of human umbilical vein endothelial cells (with TNFα (10ng/ml) increased ERK1/2 phosphorylation. This effect was largely attenuated by Endo-PDI siRNA, whereas JNK and p38 MAP kinase phosphorylation was Endo-PDI independent. Similarly, TNFα-stimulated NF-κB signaling determined by IκBα degradation as well as TNFα-induced ICAM expression was unaffected by Endo-PDI siRNA. The action of Endo-PDI was not mediated by extracellular thiol exchange or cell surface PDI as demonstrated by nonpermeative inhibitors and PDI-neutralizing antibody. Moreover, exogenously added PDI failed to restore ERK1/2 activation after Endo-PDI knockdown. This suggests that Endo-PDI acts intracellularly potentially by maintaining the Ras/Raf/MEK/ERK pathway. Indeed, knockdown of Endo-PDI attenuated Ras activation measured by G-LISA and Raf phosphorylation. ERK activation influences gene expression by the transcriptional factor AP-1, which controls MMP-9 and cathepsin B, two proteases required for angiogenesis. TNFα-stimulated MMP-9 and cathepsin B induction was reduced by silencing of Endo-PDI. Accordingly, inhibition of cathepsin B or Endo-PDI siRNA blocked the TNFα-stimulated angiogenic response in the spheroid outgrowth assays. Moreover ex vivo tube formation and in vivo Matrigel angiogenesis in response to TNFα were attenuated by Endo-PDI siRNA. In conclusion, our study establishes Endo-PDI as a novel, important mediator of AP-1-driven gene expression and endothelial angiogenic function
Resumo:
BACKGROUND: Sepsis- associated encephalopathy (SAE) is an early and common feature of severe infections. Oxidative stress is one of the mechanisms associated with the pathophysiology of SAE. The goal of this study was to investigate the involvement of NADPH oxidase in neuroinflammation and in the long-term cognitive impairment of sepsis survivors. METHODS: Sepsis was induced in WT and gp91phox knockout mice (gp91phox-/-) by cecal ligation and puncture (CLP) to induce fecal peritonitis. We measured oxidative stress, Nox2 and Nox4 gene expression and neuroinflammation in the hippocampus at six hours, twenty-four hours and five days post-sepsis. Mice were also treated with apocynin, a NADPH oxidase inhibitor. Behavioral outcomes were evaluated 15 days after sepsis with the inhibitory avoidance test and the Morris water maze in control and apocynin-treated WT mice. RESULTS: Acute oxidative damage to the hippocampus was identified by increased 4-HNE expression in parallel with an increase in Nox2 gene expression after sepsis. Pharmacological inhibition of Nox2 with apocynin completely inhibited hippocampal oxidative stress in septic animals. Pharmacologic inhibition or the absence of Nox2 in gp91phox-/- mice prevented glial cell activation, one of the central mechanisms associated with SAE. Finally, treatment with apocynin and inhibition of hippocampal oxidative stress in the acute phase of sepsis prevented the development of long-term cognitive impairment. CONCLUSIONS: Our results demonstrate that Nox2 is the main source of reactive oxygen species (ROS) involved in the oxidative damage to the hippocampus in SAE and that Nox2-derived ROS are determining factors for cognitive impairments after sepsis. These findings highlight the importance of Nox2-derived ROS as a central mechanism in the development of neuroinflammation associated with SAE.
Resumo:
[ES]La respiración es un proceso fisiológico común a todos los organismos marinos. En los estudios oceanográficos se ha determinado, comúnmente, mediante la cuantificación del consumo de oxígeno de organismos incubados en botellas. Esta metodología es tediosa y lenta, por lo que Packard et al. (1971) propusieron el uso del análisis bioquímico basado en la actividad de las enzimas implicadas en la respiración, el Sistema de Transporte de Electrones (ETS). Este análisis mide la velocidad máxima que dichas enzimas pueden tener, determinando la respiración potencial de los organismos. Dicha velocidad estará controlada por la disponibilidad intracelular de sus sustratos, los piridín nucleótidos (NADH y NADPH). En el presente trabajo, se ha analizado el metabolismo respiratorio, a través de medidas del ETS y de los piridín nucleótidos, tanto en el dinoflagelado Oxyrrhis marina en estudios de laboratorio, como en organismos recogidos del medio marino durante la campaña de circunnavegación MALASPINA 2010
Resumo:
Trabajo realizado por: Maldonado, F.; Packard, T.; Gómez, M.; Santana Rodríguez, J. J
Resumo:
Photosynthetic organisms have sought out the delicate balance between efficient light harvesting under limited irradiance and regulated energy dissipation under excess irradiance. One of the protective mechanisms is the thermal energy dissipation through the xanthophyll cycle that may transform harmlessly the excitation energy into heat and thereby prevent the formation of damaging active oxygen species (AOS). Violaxanthin deepoxidase (VDE) converts violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) defending the photosynthetic apparatus from excess of light. Another important biological pathway is the chloroplast water-water cycle, which is referred to the electrons from water generated in PSII reducing atmospheric O2 to water in PSI. This mechanism is active in the scavenging of AOS, when electron transport is slowed down by the over-reduction of NADPH pool. The control of the VDE gene and the variations of a set of physiological parameters, such as chlorophyll florescence and AOS content, have been investigated in response to excess of light and drought condition using Arabidopsis thaliana and Arbutus unedo.. Pigment analysis showed an unambiguous relationship between xanthophyll de-epoxidation state ((A+Z)/(V+A+Z)) and VDE mRNA amount in not-irrigated plants. Unexpectedly, gene expression is higher during the night when xanthophylls are mostly epoxidated and VDE activity is supposed to be very low than during the day. The importance of the water-water cycle in protecting the chloroplasts from light stress has been examined through Arabidopsis plant with a suppressed expression of the key enzyme of the cycle: the thylakoid-attached copper/zinc superoxide dismutase. The analysis revealed changes in transcript expression during leaf development consistent with a signalling role of AOS in plant defence responses but no difference was found any in photosynthesis efficiency or in AOS concentration after short-term exposure to excess of light. Environmental stresses such as drought may render previously optimal light levels excessive. In these circumstances the intrinsic regulations of photosynthetic electron transport like xanthophyll and water-water cycles might modify metabolism and gene expression in order to deal with increasing AOS.
Resumo:
In the recent years it is emerged that peripheral arterial disease (PAD) has become a growing health problem in Western countries. This is a progressive manifestation of atherothrombotic vascular disease, which results into the narrowing of the blood vessels of the lower limbs and, as final consequence, in critical leg ischemia. PAD often occurs along with other cardiovascular risk factors, including diabetes mellitus (DM), low-grade inflammation, hypertension, and lipid disorders. Patients with DM have an increased risk of developing PAD, and that risk increases with the duration of DM. Moreover, there is a growing population of patients identified with insulin resistance (IR), impaired glucose tolerance, and obesity, a pathological condition known as “metabolic syndrome”, which presents increased cardiovascular risk. Atherosclerosis is the earliest symptom of PAD and is a dynamic and progressive disease arising from the combination of endothelial dysfunction and inflammation. Endothelial dysfunction is a broad term that implies diminished production or availability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing factors. The secretion of these agents is considerably reduced in association with the major risks of atherosclerosis, especially hyperglycaemia and diabetes, and a reduced vascular repair has been observed in response to wound healing and to ischemia. Neovascularization does not only rely on the proliferation of local endothelial cells, but also involves bone marrow-derived stem cells, referred to as endothelial progenitor cells (EPCs), since they exhibit endothelial surface markers and properties. They can promote postnatal vasculogenesis by homing to, differentiating into an endothelial phenotype, proliferating and incorporating into new vessels. Consequently, EPCs are critical to endothelium maintenance and repair and their dysfunction contributes to vascular disease. The aim of this study has been the characterization of EPCs from healthy peripheral blood, in terms of proliferation, differentiation and function. Given the importance of NO in neovascularization and homing process, it has been investigated the expression of NO synthase (NOS) isoforms, eNOS, nNOS and iNOS, and the effects of their inhibition on EPC function. Moreover, it has been examined the expression of NADPH oxidase (Nox) isoforms which are the principal source of ROS in the cell. In fact, a number of evidences showed the correlation between ROS and NO metabolism, since oxidative stress causes NOS inactivation via enzyme uncoupling. In particular, it has been studied the expression of Nox2 and Nox4, constitutively expressed in endothelium, and Nox1. The second part of this research was focused on the study of EPCs under pathological conditions. Firstly, EPCs isolated from healthy subject were cultured in a hyperglycaemic medium, in order to evaluate the effects of high glucose concentration on EPCs. Secondly, EPCs were isolated from the peripheral blood of patients affected with PAD, both diabetic or not, and it was assessed their capacity to proliferate, differentiate, and to participate to neovasculogenesis. Furthermore, it was investigated the expression of NOS and Nox in these cells. Mononuclear cells isolated from peripheral blood of healthy patients, if cultured under differentiating conditions, differentiate into EPCs. These cells are not able to form capillary-like structures ex novo, but participate to vasculogenesis by incorporation into the new vessels formed by mature endothelial cells, such as HUVECs. With respect to NOS expression, these cells have high levels of iNOS, the inducible isoform of NOS, 3-4 fold higher than in HUVECs. While the endothelial isoform, eNOS, is poorly expressed in EPCs. The higher iNOS expression could be a form of compensation of lower eNOS levels. Under hyperglycaemic conditions, both iNOS and eNOS expression are enhanced compared to control EPCs, as resulted from experimental studies in animal models. In patients affected with PAD, the EPCs may act in different ways. Non-diabetic patients and diabetic patients with a higher vascular damage, evidenced by a higher number of circulating endothelial cells (CECs), show a reduced proliferation and ability to participate to vasculogenesis. On the other hand, diabetic patients with lower CEC number have proliferative and vasculogenic capacity more similar to healthy EPCs. eNOS levels in both patient types are equivalent to those of control, while iNOS expression is enhanced. Interestingly, nNOS is not detected in diabetic patients, analogously to other cell types in diabetics, which show a reduced or no nNOS expression. Concerning Nox expression, EPCs present higher levels of both Nox1 and Nox2, in comparison with HUVECs, while Nox4 is poorly expressed, probably because of uncompleted differentiation into an endothelial phenotype. Nox1 is more expressed in PAD patients, diabetic or not, than in controls, suggesting an increased ROS production. Nox2, instead, is lower in patients than in controls. Being Nox2 involved in cellular response to VEGF, its reduced expression can be referable to impaired vasculogenic potential of PAD patients.