896 resultados para Muscle tissue
Resumo:
Cytokines (IL-6, IL-10, and TNF-alpha) are increased after exhaustive exercise in the retroperitoneal adipose tissue (RPAT) and mesenteric adipose tissue (MEAT). An exhaustive acute exercise protocol induces inflammation in adipose tissue that lasts 6 h after the exercise has ended. It is well-established that this protocol increases circulating plasma levels of non-esterified fatty acids (NEFAs) and lipopolysaccharides (LPS), compounds that are important in stimulating signaling via toll like receptor-4 (TLR-4) in different type cells. In the present study, we investigated the regulation of TLR-4 and DNA-binding of nuclear factor-kappa Bp65 (NF-kappa Bp65) in different depots of adipose tissue in rats after exhaustive exercise. Rats were killed by decapitation immediately (E0 group, n = 6), 2 (E2 group, n = 6), and 6 h (E6 group, n = 6) after the exhaustive exercise, which consisted of running on a treadmill (approximately 70% V(O2max)) for 50 min and then running at an elevated rate that increased at 1 m/min, until exhaustion. The control group (C group, n = 6) was not subjected to exercise. In RPAT, TLR-4, MYD-88, and IkB alpha increased in the E2 group after exercise. MYD-88 and TRAF6 remained increased in the E6 group in comparison with the control group. DNA-binding of NF-kappa Bp65 was not altered. In MEAT, TLR-4, MYD-88, TRAF6, and DNA-binding of NF-kappa Bp65 were increased only in the E6 group. In conclusion, we have shown that increases in pro-inflammatory cytokines in adipose tissue pads after exhaustive exercise may be mediated via TLR-4 signaling, leading to increases in NF-kappa Bp65 binding to DNA in MEAT. J. Cell. Physiol. 226: 1604-1607, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Relaxing action of sodium nitroprusside (SNP) was significantly reduced in the stomach fundus of mice lacking the kinin B(1) receptor (B(1)(-/-)). Increased basal cGMP accumulation was correlated with attenuated SNP induced dose-dependent relaxation in B(1)(-/-) when compared with wild type (WT) control mice. These responses to SNP were completely blocked by the guanylate cyclase inhibitor ODQ(10 mu M). It was also found that Ca(2+)-dependent, constitutive nitric oxide synthase (cNOS) activity was unchanged but the Ca(2+)-independent inducible NOS (iNOS) activity was greater in B(1)(-/-) mice than in WT animals. Zaprinast (100 mu M), a specific phosphodiesterase inhibitor, increased the nitrergic relaxations and the accumulation of the basal as well as the SNP-stimulated cGMP in WT but not in B(1)(-/-) stomach fundus. From these findings it is concluded that the inhibited phosphodiesterase activity and high level of cGMP reduced the resting muscle tone, impairing the relaxant responses of the stomach in B(1)(-/-) mice. In addition, it can be suggested that functional B(2) receptor might be involved in the NO compensatory mechanism associated with the deficiency of kinin B(1) receptor in the gastric tissue of the transgenic mice. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The present study examined the effects of aerobic training and energy restriction on adipokines levels in mesenteric (MEAT) and retroperitoneal (RPAT) white adipose tissue from obese rats. Male Wistar rats were fed with standard laboratory diet (Control group) or high fat diet (HFD). After 15 weeks, HFD rats were randomly assigned to the following groups: rats submitted to HFD, which were sedentary (sedentary HFD, n = 8) or trained (trained HFD, n = 8); or submitted to energy-restriction (ER), which were sedentary (sedentary ER, n = 8) or trained (trained ER, n = 8). Trained rats ran on a treadmill at 55% VO(2max) for 60 min/day, 5 days/week, for 10 weeks. ER rats were submitted to a reduction of 20% daily caloric ingestion compared to the Control group. ER and aerobic training decreased body weight, MEAT and RPAT absolute weight, and fat mass. IL-6, IL-10 and TNF-alpha levels were decreased and adiponectin did not change in RPAT in response to ER protocol. On the other hand, ER and the aerobic training protocol decreased IL-6, TNF-alpha and adiponectin levels in MEAT. Absolute MEAT weight showed a positive correlation with IL-6 (r = 0.464), INF-alpha (r = 0.508); and adiponectin (r = 0.342). These results suggest a tissue-specific heterogeneous response in adipokines level. The combination of the protocols (aerobic training and energy restriction) did not induce an enhanced effect. Published by Elsevier Ltd.
Resumo:
Formaldehyde (FA) exposure induces upper airways irritation and respiratory abnormalities, but its mechanisms are not understood. Since mast cells are widely distributed in the airways, we hypothesized that FA might modify the airways reactivity by mechanism involving their activation. Tracheal rings of rats were incubated with Dulbecco`s modified medium culture containing FA (0.1 ppm) in 96-well plastic microplates in a humid atmosphere. After 30 min, 6 h, and 24-72 h, the rings were suspended in an organ bath and dose-response curve to methacholine (MCh) were determined. incubation with FA caused a transient tracheal hyperresponsiveness to MCh that was independent from tracheal epithelium integrity. Connective tissue mast cell depletion caused by compound 48/80 or mast cell activation by the allergic reaction, before exposure of tracheal rings to FA prevented the increased responsiveness to MCh. LTB(4) concentrations were increased in the culture medium of tracheas incubated with FA for 48 h, whereas the LTB(4)-receptor antagonist MK886 (1 mu M) added before FA exposure rendered the tracheal rings normoreactive to MCh. In addition, FA exposure did not cause hyperresponsiveness in tracheal segments incubated with L-arginine (1 mu M). We suggest that airway connective tissue mast cells constitute the target and may provide the increased LTB(4) generation as well as an elevated consumption of NO leading to tracheal hyperresponsiveness to MCh. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin-6 (IL-6). Acute physical exercise is known to induce a pro-inflammatory cytokine profile in the plasma. However, the effect of chronic physical exercise in the production of pro- and anti-inflammatory cytokines by the skeletal muscle has never been examined. We assessed IL-6, TNF-alpha, IL-1 beta and IL-10 levels in the skeletal muscle of rats submitted to endurance training. Animals were randomly assigned to either a Sedentary group (S, n = 7) or an endurance exercise trained group (T, n = 8). Trained rats ran on a treadmill for 5 days week(-1) for 8 weeks (60% VO(2max)). Detection of IL-6, TNF-alpha, IL-1 beta and IL-10 protein expression was carried out by ELISA. We found decreased expression of IL-1 beta, IL-6, TNF-alpha and IL-10 (28%, 27%. 32% and 37%, respectively, p < 0.05) in the extensor digital longus (EDL) from T, when compared with S. In the soleus, IL-1 beta, TNF-alpha and IL-10 protein levels were similarly decreased (34%, 42% and 50%, respectively, p < 0.05) in T in relation to S, while IL-6 expression was not affected by the training protocol. In conclusion, exercise training induced decreased cytokine protein expression in the skeletal muscle. These data show that in healthy rats, 8-week moderate-intensity aerobic training down regulates skeletal muscle production of cytokines involved in the onset, maintenance and regulation of inflammation, and that the response is heterogeneous according to fibre composition. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The signalling pathway CD40/CD40L (CD40 ligand) plays an important role in atherosclerotic plaque formation and rupture. AngII (angiotensin II), which induces oxidative stress and inflammation, is also implicated in the progression of atherosclerosis. In the present study, we tested the hypothesis that AngII increases CD40/CD40L activity in vascular cells and that ROS (reactive oxygen species) are part of the signalling cascade that controls CD40/CD40L expression. Human CASMCs (coronary artery smooth muscle cells) in culture exposed to IL (interleukin)-1 beta or TNF-alpha (tumour necrosis factor-a) had increased superoxide generation and enhanced CD40 expression, detected by EPR (electron paramagnetic resonance) and immunoblotting respectively. Both phenomena were abolished by previous incubation with membrane-permeant antioxidants or cell transfection with P22(phox) antisense. AngII (50-200 nmol/l) induced an early and sustained increase in CD40 mRNA and protein expression in CASMCs, which was blocked by treatment with antioxidants. Increased CD40 expression led to enhanced activity of the pathway, as AngII-treated cells stimulated with recombinant CD40L released higher amounts of IL-8 and had increased COX-2 (cyclo-oxygenase-2) expression. We conclude that AngII stimulation of vascular cells leads to a ROS-dependent increase in CD40/CD40L signalling pathway activity. This phenomenon may be an important mechanism modulating the arterial injury observed in atherosclerosis-related vasculopathy.
Resumo:
Reactive oxygen species are a by-product of mitochondrial oxidative phosphorylation, derived from a small quantity of superoxide radicals generated during electron transport. We conducted a comprehensive and quantitative study of oxygen consumption, inner membrane potentials, and H(2)O(2) release in mitochondria isolated from rat brain, heart, kidney, liver, and skeletal muscle, using various respiratory substrates (alpha-ketoglutarate, glutamate, succinate, glycerol phosphate, and palmitoyl carnitine). The locations and properties of reactive oxygen species formation were determined using oxidative phosphorylation and the respiratory chain modulators oligomycin, rotenone, myxothiazol, and antimycin A and the Uncoupler CCCP. We found that in mitochondria isolated from most tissues incubated under physiologically relevant conditions, reactive oxygen release accounts for 0.1-0.2% of O(2) consumed. Our findings support an important participation of flavoenzymes and complex III and a substantial role for reverse electron transport to complex I as reactive oxygen species sources. Our results also indicate that succinate is an important substrate for isolated mitochondrial reactive oxygen production in brain, heart, kidney, and skeletal muscle, whereas fatty acids generate significant quantities of oxidants in kidney and liver. Finally, we found that increasing respiratory rates is an effective way to prevent mitochondrial oxidant release under many, but not all, conditions. Altogether, our data uncover and quantify many tissue-, substrate-, and site-specific characteristics of mitochondrial ROS release. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In the present study, cadmium and lead in the muscle, lung, liver and kidney of dolphins (Sotalia guianensis and Stenella clymene) of the Bahia coast in the northwest of Brazil were determined by graphite furnace atomic absorption spectrometry. Samples were digested using a diluted oxidant mixture (HNO(3) + H(2)O(2)) with a microwave heating program performed in five steps. The optimized temperatures and chemical modifier for the pyrolysis and atomization were 700 degrees C, 1400 degrees C and Pd plus Mg for Cd, and 900 degrees C, 1800 degrees C and NH(4)H(2)PO(4) for Pb, respectively. Characteristic masses and limits of detections (n = 20, 3 sigma) for Cd and Pb were 1.6 and 9.0 pg and 0.82 ng g(-1) and 0.50 ng g(-1), respectively. Repeatability ranged from 0.87 to 8.22% for Cd and 4.31 to 8.09% for Pb. The found concentrations presented no statistical differences at the 95% confidence level when compared with the ICP OES methods. Addition and recovery tests were also performed and the results ranged between 87 and 112% for both elements. Samples of cetacean Dolphinidae (S. guianensis and S. clymene) were analyzed, and the higher concentrations ranged from 0.09 to 46.2 mu g g(-1) for Cd and 0.04 to 0.47 mu g g(-1) for Pb in liver, and from 0.133 to 277 mu g g(-1) for Cd in the kidney. (C) 2010 Elsevier By. All rights reserved.
Resumo:
Low level laser therapy (LLLT) is known for its positive results but studies on the biological and biomodulator characteristics of the effects produced in the skeletal muscle are Still lacking. In this Study the effects of two laser dosages, 5 or 10 J/cm(2), on the lesioned tibial muscle were compared. Gerbils previously lesioned by 100 g load impact were divided into three groups: GI (n = 5) controls, lesion non-irradiated; GII (n = 5), lesion irradiated with 5 J/Cm(2) and GIII (n = 5), lesion irradiated with 10 J/cm(2), and treated for 7 consecutive days with a laser He-Ne (lambda = 633 rim). After intracardiac perfusion, the muscles were dissected and reduced to small fragments, post-fixed in 1% osmium tetroxide, dehydrated in increasing alcohol concentrations, treated with propylene oxide and embedded in Spurr resin at 60 degrees C. Ultrafine Cuts examined on a transmission electron microscope (Jeol 1010) revealed in the control GI group a large number of altered Muscle fibers with degenerating mitochondria, intercellular substance containing degenerating cell fragments and budding blood capillaries with Underdeveloped endothelial cells. However, groups GII and GIII showed muscle fibers with few altered myofibrils, regularly contoured mitochondria, ample intermembrane spaces and dilated mitochondrial crests. The clean intercellular Substance showed numerous collagen fibers and capillaries with multiple abluminal processes, intraluminal protrusions and several pinocytic vesicles in endothelial cells. it was concluded that laser dosages of 5 or 10 J/cm(2) delivered by laser He-Ne (lambda = 633 rim) during 7 consecutive days increase mitochondrial activity in muscular fibers, activate fibroblasts and macrophages and stimulate angiogenesis, thus suggesting effectivity of laser therapy tinder these experimental conditions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of grain-based diets from C3 or C4-cycle plants on muscle delta C-13 change process in Nile tilapia (Oreochromis niloticus) fingerlings were investigated. Two groups of sex reversal males Nile tilapia fingerlings were fed with isoproteic (32.0% DP) and isocaloric (3200 kcal DE/kg) diets, differing from each other by their delta C-13. Muscle samples were collected and the carbon isotopic composition was measured. For C4 diet, the formula for the muscle delta C-13 change related to the intake time of a new diet was delta C-13=- 14.88 - 9.2 1 e(-0.0209t) and the half-life (T) of the muscle carbon was 33.2 days. For C3 diet, the formula was delta C-13 = - 25.43 + 8.59e(-0.0533), with T = 13 days. The C3 diet was considered more appropriate based on its palatability and consequent larger food intake than the C4 diet, resulting in an increased muscle delta C-13 change rate. However, for future studies, would be necessary to mix both the C3 and C4 feedstuffs to formulate diets nutritionally appropriated, with contrasting stable isotopes signatures. Tissue delta C-13 change rate is therefore indicated as a promising tool to better understand the biotic and abiotic factors that influence nutrients utilization from the diet and animal growth. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The contribution of growth and turnover to the muscle delta C-13 change process was investigated using mathematical models which associate delta C-13 change to time of intake of a new diet or increase in body mass. Two groups of Nile tilapia (Oreochromis niloticus) were fed on diets based on C3 (sigma C-13 = - 25.64 +/- 0.06 parts per thousand) or C4 (delta C-13= -16.01 +/- 0.06 parts per thousand) photosynthetic cycle plants to standardize the muscle delta C-13. After establishing the carbon isotopic equilibrium, fish (mean mass 24.12 +/- 6.79 g) then received the other treatment diet until a new carbon isotopic equilibrium could be established, characterizing T1 (C3-C4) and T2 (C4-C3) treatments. No significant differences were observed in fish productive performance. Good fits were obtained for the models that associated the delta C-13 change to time, resulting in carbon half-life values of 23.33 days for T1 and 25.96 days for T2. Based on values found for the muscle delta C-13 change rate from growth (0.0263 day(-1) and 0.0254 day(-1)) and turnover (0.0034 day(-1) and 0.0013 day(-1)), our results indicate that most of the delta C-13 change could be attributed to growth. The application of model that associated the delta C-13 change to body mass increase seems to produce results with no apparent biological explanation. The delta C-13 change rate could directly reflect the daily ration and growth rate, and consequently the isotopic change rates of carbon and other tissue elements can be properly used to assess different factors that may interfere in nutrient utilization and growth. (c) 2006 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)