983 resultados para Multiple Bonding Sites
Resumo:
Multiple sampling is widely used in vadose zone percolation experiments to investigate the extent in which soil structure heterogeneities influence the spatial and temporal distributions of water and solutes. In this note, a simple, robust, mathematical model, based on the beta-statistical distribution, is proposed as a method of quantifying the magnitude of heterogeneity in such experiments. The model relies on fitting two parameters, alpha and zeta to the cumulative elution curves generated in multiple-sample percolation experiments. The model does not require knowledge of the soil structure. A homogeneous or uniform distribution of a solute and/or soil-water is indicated by alpha = zeta = 1, Using these parameters, a heterogeneity index (HI) is defined as root 3 times the ratio of the standard deviation and mean. Uniform or homogeneous flow of water or solutes is indicated by HI = 1 and heterogeneity is indicated by HI > 1. A large value for this index may indicate preferential flow. The heterogeneity index relies only on knowledge of the elution curves generated from multiple sample percolation experiments and is, therefore, easily calculated. The index may also be used to describe and compare the differences in solute and soil-water percolation from different experiments. The use of this index is discussed for several different leaching experiments. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Recent advances in the application of bioelectrical impedance analysis (BIA) have indicated that a more accurate approach to the estimation of total body water is to consider the impedance of the various body segments rather than simply that of the whole body. The segmental approach necessitates defining and locating the physical demarcation between both the trunk and leg and the trunk and arm. Despite the use of anatomical markers, these points of demarcation are difficult to locate with precision between subjects. There are also technical problems associated with the regional dispersion of the current distribution from one segment (cylinder) to another of different cross-sectional area. The concept of equipotentials in line with the proximal aspects of the upper land lower) limbs along the contralateral limbs was investigated and, in particular, the utility of this concept in the measurement of segmental bioimpedance. The variation of measured segmental impedance using electrode sites along these equipotentials was less than 2.0% for all of the commonly used impedance parameters. This variation is approximately equal to that expected from biological variation over the measurement time. It is recommended that the electrode sites, for the measurement of segmental bioelectrical impedance in humans, described herein are adopted in accordance with the proposals of the NM Technology Assessment Conference Statement.
Resumo:
To investigate the influence of physical activity on bone mineral accrual during the adolescent years, we analyzed 6 years of data from 53 girls and 60 boys. Physical activity, dietary intakes, and anthropometry were measured every 6 months and dual-energy X-ray absorptiometry scans of the total body (TB), lumbar spine (LS), and proximal femur (Hologic 2000, array mode) were collected annually. Distance and velocity curves for height and bone mineral content (BMC) were fitted for each child at several skeletal sites using a cubic spline procedure, from which ages at peak height velocity (PHV) and peak BMC velocity (PBMCV) were identified. A mean age- and gender-specific standardized activity (Z) score was calculated for each subject based on multiple yearly activity assessments collected up until age of PHV. This score was used to identify active (top quartile), average (middle 2 quartiles), or inactive (bottom quartile) groups. Two-way analysis of covariance, with height and weight at PHV controlled for, demonstrated significant physical activity and gender main effects (but no interaction) for PBMCV, for BMC accrued for 2 years around peak velocity, and for BMC at 1 year post-PBMCV for the TB and femoral neck and for physical activity but not gender at the LS (all p < 0.05). Controlling for maturational and size differences between groups, we noted a 9% and 17% greater TB BMC for active boys and girls, respectively, over their inactive peers 1 year after the age of PBMCV. We also estimated that, on average, 26% of adult TB bone mineral was accrued during the 2 years around PBMCV.
Resumo:
Bioelectrical impedance analysis has found extensive application as a simple noninvasive method for the assessment of body fluid volumes, The measured impedance is, however, not only related to the volume of fluid but also to its inherent resistivity. The primary determinant of the resistivities of body fluids is the concentration of ions. The aim of this study was to investigate the sensitivity of bioelectrical impedance analysis to bodily ion status. Whole body impedance over a range of frequencies (4-1012 kHz) of rats was measured during infusion of various concentrations of saline into rats concomitant with measurement of total body and intracellular water by tracer dilution techniques. Extracellular resistance (R-o), intracellular resistance (R-i) and impedance at the characteristic frequency (Z(c)) were calculated. R-o and Z(c) were used to predict extracellular and total body water respectively using previously published formulae. The results showed that whilst R-o and Z(c) decreased proportionately to the amount of NaCl infused, R-i increased only slightly. Impedances at the end of infusion predicted increases iu TBW and ECW of approximately 4-6% despite a volume increase of less than 0.5% in TBW due to the volume of fluid infused. These data are discussed in relation to the assumption of constant resistivity in the prediction of fluid volumes from impedance data.
Resumo:
Relative eye size, gross brain morphology and central localization of 2-[I-125]iodomelatonin binding sites and melatonin receptor gene expression were compared in six gadiform fish living at different depths in the north-east Atlantic Ocean: Phycis blennoides (capture depth range 265-1260 m), Nezumia aequalis (445-1512 m), Coryphaenoides rupestris (706-1932 m), Trachyrincus murrayi (1010-1884 m), Coryphaenoides guentheri (1030 m) and Coryphaenoides (Nematonurus) armatus (2172-4787 m). Amongst these, the eye size range was 0.15-0.35 of head length with a value of 0.19 for C.(N.) armatus, the deepest species. Brain morphology reflected behavioural differences with well-developed olfactory regions in P.blennoides, T.murrayi and C. (N.) armatus and evidence of olfactory deficit in N. aequalis, C. rupestris and C. guentheri. All species had a clearly defined optic tectum with 2-[I-125] iodomelatonin binding and melatonin receptor gene expression localized to specific brain regions in a similar pattern to that found in shallow-water fish. Melatonin receptors were found throughout the visual structures of the brains of all species. Despite living beyond the depth of penetration of solar light these fish have retained central features associated with the coupling of cycles of growth, behaviour and reproduction to the diel light-dark cycle. How this functions in the deep sea remains enigmatic.
Resumo:
A method by which to overcome the clinical symptoms of atherosclerosis is the insertion of a graft to bypass an artery blocked or impeded by plaque. However, there may be insufficient autologous mammary artery for multiple or repeat bypass, saphenous vein may have varicose degenerative alterations that can lead to aneurysm in high-pressure sites, and small-caliber synthetic grafts are prone to thrombus induction and occlusion. Therefore, the aim of the present study was to develop an artificial blood conduit of any required length and diameter from the cells of the host for autologous transplantation. Silastic tubing, of variable length and diameter, was inserted into the peritoneal cavity of rats or rabbits. By 2 weeks, it had become covered by several layers of myofibroblasts, collagen matrix, and a single layer of mesothelium. The Silastic tubing was removed from the harvested implants, and the tube of living tissue was everted such that it now resembled a blood vessel with an inner lining of nonthrombotic mesothelial cells (the intima), with a media of smooth muscle-like cells (myofibroblasts), collagen, and elastin, and with an outer collagenous adventitia. The tube of tissue (10 to 20 mm long) was successfully grafted by end-to-end anastomoses into the severed carotid artery or abdominal aorta of the same animal in which they were grown. The transplant remained patent for at least 4 months and developed structures resembling elastic lamellae. The myofibroblasts gained a higher volume fraction of myofilaments and became responsive to contractile agonists, similar to the vessel into which they had been grafted. It is suggested that these nonthrombogenic tubes of living tissue, grown in the peritoneal cavity of the host, may be developed as autologous coronary artery bypass grafts or as arteriovenous access fistulae for hemodialysis patients.
Resumo:
It has been proposed that common aphidicolin-inducible fragile sites, in general, predispose to specific chromosomal breakage associated with deletion, amplification, and/or translocation in certain forms of cancer. Although this appears to be the case for the fragile site FRA3B and may be the case for FRA7G, it is not Set clear whether this association is a general property of this class of fragile site. The major aim of the present study was to determine whether the FRA16D chromosomal fragile site locus has a role to play in predisposing DNA sequences within and adjacent to the fragile site to DNA instability (such as deletion or translocation), which could lead to or be associated with neoplasia. We report the localization of FRA16D within a contig of cloned DNA and demonstrate that this fragile site coincides with a region of homozygous deletion in a gastric adenocarcinoma cell line and is bracketed by translocation breakpoints in multiple myeloma, as reported previously (Chesi, M., et al., Blood, 91: 4457-4463, 1998), Therefore, given similar findings at the FRA3B and FRA7G fragile sites, it is likely that common aphidicolin-inducible fragile sites exhibit the general property of localized DNA instability in cancer cells.
Resumo:
Inhibitors of proteolytic enzymes (proteases) are emerging as prospective treatments for diseases such as AIDS and viral infections, cancers, inflammatory disorders, and Alzheimer's disease. Generic approaches to the design of protease inhibitors are limited by the unpredictability of interactions between, and structural changes to, inhibitor and protease during binding. A computer analysis of superimposed crystal structures for 266 small molecule inhibitors bound to 48 proteases (16 aspartic, 17 serine, 8 cysteine, and 7 metallo) provides the first conclusive proof that inhibitors, including substrate analogues, commonly bind in an extended beta-strand conformation at the active sites of all these proteases. Representative superimposed structures are shown for (a) multiple inhibitors bound to a protease of each class, (b) single inhibitors each bound to multiple proteases, and (c) conformationally constrained inhibitors bound to proteases. Thus inhibitor/substrate conformation, rather than sequence/composition alone, influences protease recognition, and this has profound implications for inhibitor design. This conclusion is supported by NMR, CD, and binding studies for HIV-1 protease inhibitors/ substrates which, when preorganized in an extended conformation, have significantly higher protease affinity. Recognition is dependent upon conformational equilibria since helical and turn peptide conformations are not processed by proteases. Conformational selection explains the resistance of folded/structured regions of proteins to proteolytic degradation, the susceptibility of denatured proteins to processing, and the higher affinity of conformationally constrained 'extended' inhibitors/substrates for proteases. Other approaches to extended inhibitor conformations should similarly lead to high-affinity binding to a protease.
Resumo:
Using CD and 2D H-1 NMR spectroscopy, we have identified potential initiation sites for the folding of T4 lysozyme by examining the conformational preferences of peptide fragments corresponding to regions of secondary structure. CD spectropolarimetry showed most peptides were unstructured in water, but adopted partial helical conformations in TFE and SDS solution. This was also consistent with the H-1 NMR data which showed that the peptides were predominantly disordered in water, although in some cases, nascent or small populations of partially folded conformations could be detected. NOE patterns, coupling constants, and deviations from random coil Her chemical shift values complemented the CD data and confirmed that many of the peptides were helical in TFE and SDS micelles. In particular, the peptide corresponding to helix E in the native enzyme formed a well-defined helix in both TFE and SDS, indicating that helix E potentially forms an initiation site for T4 lysozyme folding. The data for the other peptides indicated that helices D, F, G, and H are dependent on tertiary interactions for their folding and/or stability. Overall, the results from this study, and those of our earlier studies, are in agreement with modeling and IID-deuterium exchange experiments, and support an hierarchical model of folding for T4 lysozyme.
Resumo:
The crystal structures of the Tutton salts (NH4)(2)[Cu(H2O)(6)](SO4)(2), diammonium hexaaquacopper disulfate, formed with normal water and isotopically substituted (H2O)-O-18, have been determined by X-ray diffraction at 9.5 K and are very similar, with Cu-O(7) the longest of the Cu-O bonds of the Jahn-Teller distorted octahedral [Cu(H2O)(6)](2+) complex. It is known that structural differences accompany deuteration of (NH4)(2)[Cu(H2O)(6)](SO4)(2), the most dramatic of which is a switch to Cu-O(8) as the longest such bond. The present result suggests that the structural differences are associated with hydrogen-bonding effects rather than with increased mass of the water ligands affecting the Jahn-Teller coupling. The Jahn-Teller distortions and hydrogen-bonding contacts in the compounds are compared with those reported for other Tutton salts at ambient and high pressure.
Resumo:
Fluorescence in situ hybridization of a tile path of DNA subclones has previously enabled the cytogenetic definition of the minimal DNA sequence which spans the FRA16D common chromosomal fragile site, located at 16q23.2. Homozygous deletion of the FRA16D locus has been reported in adenocarcinomas of stomach, colon, lung and ovary. We have sequenced the 270 kb containing the FRA16D fragile site and the minimal homozygously deleted region in tumour cells. This sequence enabled localization of some of the tumour cell breakpoints to regions which contain AT-rich secondary structures similar to those associated with the FRA10B and FRA16B rare fragile sites. The FRA16D DNA sequence also led to the identification of an alternatively spliced gene, named FOR (fragile site FRA16D oxidoreductase), exons of which span both the fragile site and the minimal region of homozygous deletion. In addition, the complete DNA sequence of the FRA16D-containing FOR intron reveals no evidence of additional authentic transcripts. Alternatively spliced FOR transcripts (FOR I, FOR II and FOR III) encode proteins which share N-terminal WW domains and differ at their C-terminus, with FOR III having a truncated oxidoreductase domain. FRA16D-associated deletions selectively affect the FOR gene transcripts. Three out of five previously mapped translocation breakpoints in multiple myeloma are also located within the FOR gene. FOR is therefore the principle genetic target for DNA instability at 16q23.2 and perturbation of FOR function is likely to contribute to the biological consequences of DNA instability at FRA16D in cancer cells.
Resumo:
Chimeric papillomavirus (PV) virus-like particles (VLPs) based on the bovine papillomavirus type 1 (BPV-1) L1 protein were constructed by replacing the 23-carboxyl-terminal amino acids of the BPV1 major protein L1 with an artificial polytope minigene, containing known CTL epitopes of human PV16 E7 protein, HIV IIIB gp120 P18, Nef, and reverse transcriptase (RT) proteins, and an HPV16 E7 linear B epitope. The CTL epitopes were restricted by three different MHC class 1 alleles (H-2(b), H-2(d), HLA-A*0201). The chimeric L1 protein assembled into VLPs when expressed in SF-9 cells by recombinant baculovirus. After immunization of mice with polytope VLPs in the absence of adjuvant, serum antibodies were detected which reacted with both polytope VLPs and wild-type BPV1L1 VLPs, in addition to the HPV16E7 linear B cell epitope. CTL precursors specific for the HPV16 E7, HIV P18, and RT CTL epitopes were also detected in the spleen of immunized mice. Polytope VLPs can thus deliver multiple B and T epitopes as immunogens to the MHC class I and class II pathways, extending the utility of VLPs as self-adjuvanting immunogen delivery systems. (C) 2000 Academic Press.
Resumo:
The reactivity of sera from patients with cervical cancer with the E7 protein of human papilloma virus type 16 (HPV16) was estimated using a novel non-radioactive immunoprecipitation assay and four established protein-and peptide-based immunoassays. Six of 14 sera from patients with cervical cancer and 1 of 10 sera from healthy laboratory staff showed repeated reactivity with E7 in at least one assay. Four of the 7 reactive sera were consistently reactive in more than one assay, but only one was reactive in all four assays. Following immunization with E7, 2 of 5 patients with cervical cancer had increased E7-specific reactivity, measurable in one or more assays. No single assay was particularly sensitive for E7 reactivity, or predictive of cervical cancer. Mapping of E7 reactivity to specific E7 peptides was unsuccessful, suggesting that natural or induced E7 reactivity in human serum is commonly directed to conformational epitopes of E7, These results suggest that each assay employed with is study measures a different aspect of E7 reactivity, and that various reactivities to E7 may manifest following HPV infection or immunization. This finding is of significance for monitoring of E7 immunotherapy and for serological screening for cervical cancer. Copyright (C) 2000 S.Karger, AG. Basel.
Resumo:
Purpose: Cyclophilin 40 (CyP40) is an estrogen receptor-associated protein which appears to modify receptor function. The aim of this study was to determine the extent of allelic loss at the CyP40 locus in a panel of breast carcinomas using a newly characterized microsatellite marker located upstream of the CyP40 gene and then to correlate this with losses at chromosomal sites for cancer-associated genes. Methods: Allelic loss at CyP40 was determined from patients' matched tumor and normal breast tissue using Genescan 672 software analysis of fluorescently labeled, PAGE-separated PCR products incorporating the marker. For each patient, allelic loss at CyP40 was then assessed and compared with losses at markers for various cancer-associated genes. Results: Allelic loss was detected in 30% of breast carcinomas from patients heterozygous for the CyP40 marker. All carcinomas demonstrating allelic loss were grade II or III invasive ductal carcinomas and generally showed multiple losses at other sites near known cancer-associated genes. Conclusions: The polymorphic marker which we characterized was useful in determining allelic loss at the CyP40 locus in breast cancer patients and when applied in these studies in conjunction with various cancer-associated gene markers, suggests that deletions in the region of the CyP40 gene might be a late event in breast tumor progression.
Resumo:
Postmenopausal Caucasian women aged less than 80 years (n = 99) with one or more atraumatic vertebral fracture and no hip fractures, were treated by cyclical administration of enteric coated sodium fluoride (NaF) or no NaF for 27 months, with precautions to prevent excessive stimulation of bone turnover. In the first study 65 women, unexposed to estrogen (-E study), age 70.8 +/- 0.8 years (mean SEM) were all treated with calcium (Ca) 1.0-1.2 g daily and ergocalciferol (D) 0.25 mg per 25 kg once weekly and were randomly assigned to cyclical NaF (6 months on. 3 months off, initial dose 60 mg/day; group F CaD, n = 34) or no NaF (group CaD, n = 3 1). In the second study 34 patients. age 65.5 +/- 1.2 years, on hormone replacement therapy (E) at baseline, had this standardized, and were all treated with Ca and D and similarly randomized (FE CaD, n = 17, E CaD, n = 17) (+E study). The patients were stratified according to E status and subsequently assigned randomly to NaF. Seventy-five patients completed the trial. Both groups treated with NaF showed an increase in lumbar spinal density (by DXA) above baseline by 27 months: FE CaD + 16.2% and F CaD +9.3% (both p = 0.0001). In neither group CaD nor E CaD did lumbar spinal density increase. Peripheral bone loss occurred at most sites in the F CaD group at 27 months: tibia/fibula shaft -7.3% (p = 0.005); femoral shaft -7.1% (p = 0.004); distal forearm -4.0% (p = 0.004); total hip -4.1% (p = 0. 003); and femoral neck -3.5% (p = 0.006). No significant loss occurred in group FE CaD. Differences between the two NaF groups were greatest at the total hip at 27 months but were not significant [p < 0.05; in view of the multiple bone mineral density (BMD) sites, an alpha of 0.01 was employed to denote significance in BMD changes throughout this paper]. Using Cox's proportional hazards model, in the -E study there were significantly more patients with first fresh vertebral fractures in those treated with NaF than in those not so treated (RR = 24.2, p = 0.008, 95% CI 2.3-255). Patients developing first fresh fractures in the first 9 months were markedly different between groups: -23% of F CaD, 0 of CaD, 29% of FE CaD and 0 of E CaD. The incidence of incomplete (stress) fractures was similar in the two NaF-treated groups. Complete nonvertebral fractures did not occur in the two +E groups, there were no differences between groups F CaD and CaD. Baseline BMD (spine and femoral neck) was related to incident vertebral fractures in the control groups (no NaF), but not in the two NaF groups. Our results and a literature review indicate that fluoride salts. if used, should be at low dosage, with pretreatment and co-treatment with a bone resorption inhibitor.