953 resultados para Multidentate Ligand
Resumo:
Starting from previously reported cis-Ru(MeL)(2)Cl-2, where MeL is 4,4,4',4'-tetramethyl-2,2'-bisoxazoline, cis-Ru(MeL)(2)Br-2 (1), cis-Ru( MeL)(2)I-2 (2), cis-Ru(MeL)(2)(NCS)(2) center dot H2O (3), cis-Ru(MeL)(2)(N-3)(2) (4) and cis-[Ru(MeL)(2)(MeCN)(2)](PF6)(2) center dot (CH3)(2)CO (5) are synthesised. The X-ray crystal structures of complexes 1, 2, 3 and 5 have been determined. All the five new complexes have been characterized by FTIR, ESIMS and H-1 NMR. In cyclic voltammetry in acetonitrile at a glassy carbon electrode, the complexes display a quasireversible Ru(II/III) couple in the range 0.32-1.71 V versus NHE. The Ru(II/III) potentials yield a satisfactorily linear correlation with Chatt's ligand constants P-L for the monodantate ligands. From the intercept and by comparing the known situation in Ru(2,2'-bipyridine)(2)L-2, it is concluded that MeL, a non-aromatic diimine, is significantly more pi-acidic than 2,2'-bipyridine. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the title family, the ONO donor ligands are the acetylhydrazones of salicylaidehyde (H2L1) and 2-hydroxyacetophenone (H2L2) (general abbreviation, H2L). The reaction of bis(acetylacetonato)oxovanadium(IV) with a mixture of tridentate H2L and a bidentate NN donor [e.g., 2,2'-bipyridine(bpy) or 1,10-phenanthroline(phen), hereafter B] ligands in equimolar ratio afforded the tetravalent complexes of the type [(VO)-O-IV(L)(B)]; complexes (1)-(4) whereas, if B is replaced by 8-hydroxyquinoline(Hhq) (which is a bidentate ON donor ligand), the above reaction mixture yielded the pentavalent complexes of the type [(VO)-O-V(L)(hq)]; complexes (5) and (6). Aerial oxygen is most likely the oxidant (for the oxidation of V-IV -> V-V) in the synthesis of pentavalent complexes (5) and (6). [(VO)-O-IV(L)(B)] complexes are one electron paramagnetic and display axial EPR spectra, while the [(VO)-O-V(L)(hq)] complexes are diamagnetic. The X-ray structure of [(VO)-O-V(L-2)(hq)] (6) indicates that H2L2 ligand is bonded with the vanadium meridionally in a tridentate dinegative fashion through its phenolic-O, enolic-O and imine-N atoms. The general bond length order is: oxo < phenolato < enolato. The V-O (enolato) bond is longer than V-O (phenolato) bond by similar to 0.07 angstrom and is identical with V-O (carboxylate) bond. H-1 NMR spectrum of (6) in CDCl3 solution indicates that the binding nature in the solid state is also retained in solution. Complexes (1)(4) display two ligand-field transitions in the visible region near 820 and 480 nm in DMF solution and exhibit irreversible oxidation peak near +0.60 V versus SCE in DMSO solution, while complexes (5) and (6) exhibit only LMCT band near 535 nm and display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. The VO3+-VO2+ E-1/2 values shift considerably to more negative values when neutral NN donor is replaced by anionic ON donor species and it also provides better VO3+ binding via phenolato oxygen. For a given bidentate ligand, E-1/2 increases in the order: (L-2)(2-) < (L-1)(2-). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Four tridentate dibasic ONO donor hydrazone ligands derived from the condensation of benzoylhydrazine with either 2-hydroxyacetophenone or its para substituted derivatives (H2L1-4, general abbreviation H2L) have been used as primary ligands and 8-hydroxyquinoline (Hhq, a bidentate monobasic ON donor species) has been used as auxiliary ligand. The reaction of [(VO)-O-IV(acac)21 with H2L in methanol followed by the addition of Hhq in equimolar ratio under aerobic condition afforded the mixed-ligand oxovanadium(V) complexes of the type [(VO)-O-V(L)(hq)] (1-4) in excellent yield. The X-ray structure of the compound [(VO)-O-V(L-4)(hq)] (4) indicates that the H2L4 ligand is bonded with vanadium meridionally in a tridentate dinegative fashion through its deprotonated phenolic-O, deprotonated enolic-O and imine-N atoms. The V-O bond length order is: oxo < phenolato < enolato. H-1 NMR spectra of 4 in CDCl3 solution indicates that it's solid-state structure is retained in solution. Complexes are diamagnetic and exhibit only ligand to metal charge transfer (LMCT) transition band near 530 nm in CH2Cl2 solution in addition to intra-ligand pi-pi* transition band near 335 rim and they display quasi-reversible one electron reduction peak near -0.10 V versus SCE in CH2Cl2 solution. lambda(max) (for LMCT transition) and the reduction peak potential (E-p(c)) values of the complexes are found to be linearly related with the Hammett (sigma) constants of the substituents in the aryloxy ring of the hydrazone ligands. lambda(max) and E-p(c) values show large dependence d lambda(max)/d sigma = 32.54 nm and dE(p)(c)/d sigma = 0.19 V, respectively, on the Hammett constant. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The bifunctional carbamoyl methyl sulfoxide ligands, PhCH2SOCH2CONHPh (L-1), PhCH2SOCH2CONHCH2Ph (L-2), (PhSOCH2CONPr2)-Pr-i (L-3), PhSOCH2CONBu2 (L-4), (PhSOCH2CONBu2)-Bu-i (L-5) and PhSOCH2CON(C8H17)(2) (L-6) have been synthesized and characterized by spectroscopic methods. The selected coordination chemistry of L-1, L-3, L-4 and L-5 with [UO2(NO3)(2)] and [Ce(NO3)(3)] has been evaluated. The structures of the compounds [UO2(NO3)(2)((PhSOCH2CONBu2)-Bu-i)] (10) and [Ce(NO3)(3)(PhSOCH2CONBu2)(2)] (12) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of ligand L-6 with U(VI), Pu(IV) and Am(III) in tracer level showed an appreciable extraction for U(VI) and Pu(IV) in up to 10 M HNO3 but not for Am(III). Thermal studies on compounds 8 and 10 in air revealed that the ligands can be destroyed completely on incineration. The electron spray mass spectra of compounds 8 and 10 in acetone show that extensive ligand distribution reactions occur in solution to give a mixture of products with ligand to metal ratios of 1 : 1 and 2 : 1. However, 10 retains its solid state structure in CH2Cl2.
Resumo:
The bi-functional carbamoyl methyl pyrazole ligands, C5H7N2CH2CONBu2 (L-1), (C5H7N2CH2CONBu2)-Bu-i (L-2), C3H3N2CH2CONBu2 (L-3), (C3H3N2CH2CONBu2)-Bu-i (L-4) and C5H7N2CH2CON(C8H17)(2) (L-5) were synthesized and characterized by spectroscopic and elemental analysis methods. The selected coordination chemistry of L-1 to L-4 with [UO2(NO3)(2)center dot 6H(2)O], [La(NO3)(3)center dot 6H(2)O] and [Ce(NO3)(3)center dot 6H(2)O] has been evaluated. Structures for the compounds [UO2(NO3)(2) C5H7N2CH2CONBu2] (6) [UO2(NO3)(2) (C5H7N2CHCONBu2)-Bu-i] (7) and [Ce(NO3)(3){C(3)H(3)N(2)CH(2)CON(i)Bu2}(2)] (11) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of the ligand L-5 with U(VI) and Pu(IV) in tracer level showed an appreciable extraction for U(VI) and Pu(TV) up to 10 M HNO3 but not for Am(III). Thermal studies of the compounds 6 and 7 in air revealed that the ligands can be destroyed completely on incineration. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
One 3D and one 2D mu(1,5)-dicyanamide bridged Ni-II complexes having molecular formula [Ni(L1)(dca)(2)] (1) and [Ni-2(L-2)(2)(dca)(4)] (.) 0.5H(2)O (2) (L1 = 4-(2-aminoethyl)-morpholine, L2 = 1-(2-aminoethyl)-piperidine and dca = dicyanamide dianion) have been synthesized. X-ray single crystal analyses and low temperature magnetic measurements were used to characterize the complexes. Complex 1 represents a 3D structure where each metal ion is chelated by morpholine ligand (L1) and connected by four mu(1,5)-dca. Whereas complex 2 shows an undulated 2D structure with grid of (4,4) topology having two crystallographically independent Ni-II centers in similar octahedral environment where each metal center is chelated by one piperidine ligand (L2) and coordinated by four mu(1,5)-dca. Magnetic measurements of both the complexes indicate weak antiferromagnetic interactions through the mu-(1,5)-dca bridging ligands. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Three new metal-organic polymeric complexes, [Fe(N-3)(2)(bPP)(2)] (1), [Fe(N-3)(2)(bpe)] (2), and [Fe(N-3)(2)(phen)] (3) [bpp = (1,3-bis(4-pyridyl)-propane), bpe = (1,2-bis(4-pyridyl)-ethane), phen = 1,10-phenanthroline], have been synthesized and characterized by single-crystal X-ray diffraction studies and low-temperature magnetic measurements in the range 300-2 K. Complexes 1 and 2 crystallize in the monoclinic system, space group C2/c, with the following cell parameters: a = 19.355(4) Angstrom, b = 7.076(2) Angstrom, c = 22.549(4) Angstrom, beta = 119.50(3)degrees, Z = 4, and a = 10.007(14) Angstrom, b = 13.789(18) Angstrom, c = 10.377(14) Angstrom, beta = 103.50(1)degrees, Z = 4, respectively. Complex 3 crystallizes in the triclinic system, space group P (1) over bar, with a = 7.155(12) Angstrom, b = 10.066(14) Angstrom, c = 10.508(14) Angstrom, alpha = 109.57(1)degrees, beta = 104.57(1)degrees, gamma = 105.10(1)degrees, and Z = 2. All coordination polymers exhibit octahedral Fe(II) nodes. The structural determination of 1 reveals a parallel interpenetrated structure of 2D layers of (4,4) topology, formed by Fe(II) nodes linked through bpp ligands, while mono-coordinated azide anions are pendant from the corrugated sheet. Complex 2 has a 2D arrangement constructed through 1D double end-to-end azide bridged iron(11) chains interconnected through bpe ligands. Complex 3 shows a polymeric arrangement where the metal ions are interlinked through pairs of end-on and end-to-end azide ligands exhibiting a zigzag arrangement of metals (Fe-Fe-Fe angle of 111.18degrees) and an intermetallic separation of 3.347 Angstrom (through the EO azide) and of 5.229 Angstrom (EE azide). Variable-temperature magnetic susceptibility data suggest that there is no magnetic interaction between the metal centers in 1, whereas in 2 there is an antiferromagnetic interaction through the end-to-end azide bridge. Complex 3 shows ferro- as well as anti-ferromagnetic interactions between the metal centers generated through the alternating end-on and end-to-end azide bridges. Complex I has been modeled using the D parameter (considering distorted octahedral Fe(II) geometry and with any possible J value equal to zero) and complex 2 has been modeled as a one-dimensional system with classical and/or quantum spin where we have used two possible full diagonalization processes: without and with the D parameter, considering the important distortions of the Fe(II) ions. For complex 3, the alternating coupling model impedes a mathematical solution for the modeling as classical spins. With quantum spin, the modeling has been made as in 2.
Resumo:
Synthesis, structural characterization, and magnetic properties of a new cyano-bridged one-dimensional iron (III)-gadolinium (III) compound, trans-[Gd(o-phen)(2)(H2O)(2)(mu-CN)(2)Fe(CN)(4)], - 2no-phen (o-phen = 1,10-phenanthroline), have been described. The compound crystallizes in the triclinic P (1) over bar space group with the following unit cell parameters: a = 10.538(14) angstrom, b = 12.004(14) angstrom, c = 20.61(2) angstrom, alpha = 92.41(1)degrees, beta = 92.76(1)degrees, gamma = 11 2.72(1)degrees, and Z = 2. In this complex, each gadolinium (III) is coordinated to two nitrile nitrogens of the CN groups coming from two different ferricyanides, the mutually trans cyanides of each of which links another different Gd-III to create -NC-Fe(CN)(4)-CN-Gd-NC- type 1-D chain structure. The one-dimensional chains are self-assembled in two-dimensions via weak C-H center dot center dot center dot N hydrogen bonds. Both the variable-temperature (2-300 K, 0.01 T and 0.8 T) and variable-field (0-50 000 Gauss, 2 K) magnetic measurements reveal the existence of very weak interaction in this molecule. The temperature dependence of the susceptibilities has been analyzed using a model for a chain of alternating classic (7/2) and quantum (1/2) spins. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
New Cu(I) and Ag(I) complexes were prepared by reaction of [M(NCCH3)(4)][X] (M = Cu or Ag; X = BF4 or PF6) with the bidentate chalcogenide ligands Ph2P(E)NHP(E)Ph-2 (E = S, S(2)dppa; E = Se, Se(2)dppa), and dpspf (1, 1'-bis(diphenylselenophosphoryl)ferrocene). Copper and silver behaved differently. While three molecules of either S(2)dppa and Se(2)dppa bind to a distorted tetrahedral Cu-4 cluster, with deprotonation of the ligand, 1:2 complexes of the neutral ligands are formed with Ag(l), with a tetrahedral coordination of the metal. The [Cu-4{Ph2P(Se)NP(Se)Ph-2}(3)](+) clusters assemble as dimers, held together by weak Se...Se distances interactions. Another dimer was observed for the [Ag(dpspf)](+) cation, with two short Ag...Se distances. DFT and MP2 calculations indicated the presence of attracting interactions, reflected in positive Mayer indices (MI). The electrochemistry study of this species showed that both oxidation and reduction took place at silver. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Two vanadium(V) complexes, [VO(L-1)]acac)] (1) and [VO(L-2)(acac)] (2), where H2L1 = N,N-bis(2-hydroxy-3-5-di-tert-butyl-benzyl)propylamine and H2L2 = 2,2'-selenobis(4,6-di-tert-butylphenol), have been synthesized and characterized by elemental analyses, IR, V-51 NMR, both in the solid and in solution, and cyclic voltammetric studies. Single crystal X-ray studies reveal that in complex 1 the vanadium atom is octahedrally coordinated with an O5N donor environment, where the oxygen atom of the V-V=O moiety and the N atom of the ONO ligand occupy the axial sites while two oxygen atoms (O1 and O2) from the bisphenolate ligand and two oxygen atoms (O3 and O4) from the acac ligand occupy the equatorial plane. A similar bonding pattern has also been encountered for 2 with the exception that a Se atom instead of N is involved in weak bonding to the metal center. Both complexes showed reversible cyclic voltammeric responses and E-1/2 appears at -0.18 and 0.10 V versus NHE for complexes 1 and 2, respectively. The kinetics of oxidation of ascorbic acid by complex 1 were carried out in 50% MeCN-50% HO (v/v) at 25 degrees C. The high formation constant value, Q = 63 +/- 7 M-1, reveals that the reaction proceeds through the rapid formation of a H-bonded intermediate. The low k(2)Q(2)/k(1)Q(1) ratio (13.4) for 1 points out that there is extensive H-bonding between the oxygen atom of the V-V=O group and the OH group of ascorbic acid. (c) 2007 Published by Elsevier Ltd.
Resumo:
A novel trinuclear nickel(II) complex, [Ni-3(L)(2)(H2O)(2)](ClO4)(2), where L is a bridging unsymmetrical tetradentate ligand, involving o-phenylenediamine, diacetyl monoxime and acetylacetone (H2L = 4-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-phenylimino]-pentan-2- one oxime) has been synthesized and characterized structurally. In the complex, an octahedral Ni( II) centre is held in the middle by two square planar units with the aid of oxime and ketonic bridges. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
Three new ruthenium complexes of the formulae cis-[Ru(PPh3)(2)(BzTscbz)(2)] (1a), [Ru-2(PPh3)(2)(BzTscbz)(4)] (1b) and [Ru(PPh3)(2)(BzTscHbz)(2)](ClO4)(2) (2) [BzTscHbz = 4-(phenyl) thiosemicarbazone of benzaldehyde] have been synthesized and characterized by various physicochemical methods including X-ray structure determinations for 1a and 1b. The relative stabilities of the four-membered versus five-membered chelate rings formed by the deprotonated ligand BzTscbz are discussed on the basis of the experimental results and some semi-empirical as well as DFT calculations. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
[(VO)-O-IV(acac)(2)] reacts with an equimolar amount of benzoyl hydrazones of 2-hydroxyacetophenone (H2L1), 2-hydroxy-5-methylacetophenone (H2L2) and 5-chloro-2-hydroxyacetophenone (H2L4) in methanol to afford the penta-coordinated mixed-ligand methoxy bonded oxidovanadium(V) complexes [(VO)-O-V(L-1)-(OCHA(3))](1). [(VO)-O-V(L-2)(OCH3)](2), and [(VO)-O-V(L-4)(OCH3)](4), respectively, whereas, the similar reaction with the benzoyl hydrazone of 2-hydroxy-5-methoxyacetophenone (H2L3) producing only the hexa-coordinated dimethoxy-bridged dimeric complex [(VO)-O-V(L-3)(OCH3)](2) (3A). Similar type of hexa-coordinated dimeric analogue of 1 i.e., [(VO)-O-V(L-1)(OCH3)](2) (1A) was obtained from the reaction of [(VO)-O-IV(acac)(2)] with the equimolar amount of H2L1 in presence of half equivalent 4,4'-bipyridine in methanol while the decomposition of [(VO)-O-IV(L-2)(bipy)] complex in methanol afforded the dimeric analogue of 2 i.e., [(VO)-O-V(L-2)(OCH3)](2) (2A). All these dimeric complexes 1A-3A react with an excess amount of imidazole in methanol producing the respective monomeric complex. The X-ray structural analysis of 1-3 and their dimeric analogues 1A-3A indicates that the geometry around the vanadium center in the monomeric form is distorted square-pyramidal while that of their respective dimeric forms is distorted octahedral, where the ligands are bonded to vanadium meridionally in their fully deprotonated enol forms. Due to the formation of bridge, the V-O(methoxy) bond in the dimeric complexes is lengthened to such an extent that it becomes equal in length with the V-O(phenolate) bond in 3A and even longer in 1A and 2A, which is unprecedented. The H-1 NMR spectra of the complexes 1A-3A in CDCl3 solution, indicates that these dimeric complexes are converted appreciably into their respective monomeric form. Complexes are electro-active displaying one quasi-reversible reduction peak near +0.25 V versus SCE in CH2Cl2 solution. The E-1/2 values of the complexes show linear relationship with the Hammett parameter (sigma) of the substituents. All these VO3+-complexes are converted to the corresponding complexes with V2O34+ motif simply on refluxing them in acetone and to the complexes with VO2+ motif on reaction with 2 KOH in methanol. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A series of five Ni(II)-complexes containing the same tridentate Schiff base but different monoanionic ligands (N-3(-), NO3-, PhCOO- and NO2-)reveals that the competitive as well as the cooperative role of the monoanions and phenoxo group in bridging the metal ions play the key role in the variation of molecular architecture.
Resumo:
Anion directed, template syntheses of two dinuclear copper(II) complexes of mono-condensed Schiff base ligand Hdipn (4-[(3-aminopentylimino)-methyl]-benzene-1,3-diol) involving 2,4- dihydroxybenzaldehyde and 1,3-diaminopentane were realized in the presence of bridging azide and acetate anions. Both complexes, [Cu-2(dipn)(2)(N-3)(2)] (1) and [Cu-2(dip(n))(2)(OAc)(2)] (2) have been characterized by X-ray crystallography. The two mononuclear units are joined together by basal-apical, double end-on azido bridges in complex 1 and by basal-apical, double mono-atomic acetate oxygen-bridges in 2. Both complexes form rectangular grid-like supramolecular structures via H-bonds connecting the azide or acetate anion and the p-hydroxy group of 2,4- dihydroxybenzaldehyde. Variable-temperature (300-2 K) magnetic susceptibility measurements reveal that complex 1 has antiferromagnetic coupling (J = -2.10 cm (1)) through the azide bridge while 2 has intra-dimer ferromagnetic coupling through the acetate bridge and inter-dimer antiferromagnetic coupling through H-bonds (J = 2.85 cm (1), J' = -1.08 cm (1)). (C) 2009 Elsevier B. V. All rights reserved.