839 resultados para Multi-robot systems
Resumo:
In this thesis various mathematical methods of studying the transient and dynamic stabiIity of practical power systems are presented. Certain long established methods are reviewed and refinements of some proposed. New methods are presented which remove some of the difficulties encountered in applying the powerful stability theories based on the concepts of Liapunov. Chapter 1 is concerned with numerical solution of the transient stability problem. Following a review and comparison of synchronous machine models the superiority of a particular model from the point of view of combined computing time and accuracy is demonstrated. A digital computer program incorporating all the synchronous machine models discussed, and an induction machine model, is described and results of a practical multi-machine transient stability study are presented. Chapter 2 reviews certain concepts and theorems due to Liapunov. In Chapter 3 transient stability regions of single, two and multi~machine systems are investigated through the use of energy type Liapunov functions. The treatment removes several mathematical difficulties encountered in earlier applications of the method. In Chapter 4 a simple criterion for the steady state stability of a multi-machine system is developed and compared with established criteria and a state space approach. In Chapters 5, 6 and 7 dynamic stability and small signal dynamic response are studied through a state space representation of the system. In Chapter 5 the state space equations are derived for single machine systems. An example is provided in which the dynamic stability limit curves are plotted for various synchronous machine representations. In Chapter 6 the state space approach is extended to multi~machine systems. To draw conclusions concerning dynamic stability or dynamic response the system eigenvalues must be properly interpreted, and a discussion concerning correct interpretation is included. Chapter 7 presents a discussion of the optimisation of power system small sjgnal performance through the use of Liapunov functions.
Resumo:
This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.
Resumo:
This thesis describes the history of robots and explains the reasons for the international differences in robot diffusion, and the differences in the diffusion of various robot applications with reference to the UK. As opposed to most of the literature, diffusion is examined with an integrated and interdisciplinary perspective. Robot technology evolves from the interaction of development, supply and manufacture, adoption, and promotion. activities. Emphasis is given to the analysis of adoption, at present the most important limiting factor of robot advancement in the UK. Technical development is inferred from a comparison of surveys on equipment, and from the topics of ten years of symposia papers. This classification of papers is also used to highlight the international and institutional differences in robot development. Analysis of the growth in robot supply, manufacture, and use is made from statistics compiled. A series of interviews with users and potential users serves to illustrate the factors and implications of the adoption of different robot systems in the UK. Adoption pioneering takes place when several conditions exist: when the technology is compatible with the firm, when its advantages outweigh its disadvantages, and particularly when a climate exists which encourages the managerial involvement and the labour acceptance. The degree of compatibility (technical, methodological, organisational, and economic) and the consequences (profitability, labour impacts, and managerial effects) of different robot systems (transfer, manipulative, processing, and assembly) are determined by various aspects of manufacturing operations (complexity, automation, integration, labour tasks, and working conditions). The climate for adoption pioneering is basically determined by the performance of firms. The firms' policies on capital investment have as decisive a role in determining the profitability of robots as their total labour costs. The performance of the motor car industry and its machine builders explains, more than any other factor, the present state of robot advancement in the UK.
Resumo:
We investigate the policies of (1) restricting social influence and (2) imposing curfews upon interacting citizens in a community. We compare and contrast their effects on the social order and the emerging levels of civil violence. Influence models have been used in the past in the context of decision making in a variety of application domains. The policy of curfews has been utilised with the aim of curbing social violence but little research has been done on its effectiveness. We develop a multi-agent-based model that is used to simulate a community of citizens and the police force that guards it. We find that restricting social influence does indeed pacify rebellious societies, but has the opposite effect on peaceful ones. On the other hand, our simple model indicates that restricting mobility through curfews has a pacifying effect across all types of society.
Resumo:
Low-cost, high-capacity optical transmission systems are required for metropolitan area networks. Direct-detected multi-carrier systems are attractive candidates, but polarization mode dispersion (PMD) is one of the major impairments that limits their performance. In this paper, we report the first experimental analysis of the PMD tolerance of a 288Gbit/s NRZ-OOK Coherent Wavelength Division Multiplexing system. The results show that this impairment is determined primarily by the subcarrier baud rate. We confirm the robustness of the system to PMD by demonstrating error-free performance over an unrepeatered 124km field-installed single-mode fiber with a negligible penalty of 0.3dB compared to the back-to-back measurements. (C) 2010 Optical Society of America
Resumo:
Optically multiplexed multi-carrier systems with channel spacing reduced to the symbol rate per carrier are highly susceptible to inter-channel crosstalk, which places stringent requirements for the specifications of system components and hinders the use of high-level formats. In this paper, we investigate the performance benefits of using offset 4-, 16-, and 64-quadrature amplitude modulation (QAM) in coherent wavelength division multiplexing (CoWDM). We compare this system with recently reported Nyquist WDM and no-guard-interval optical coherent orthogonal frequency division multiplexing, and show that the presented system greatly relaxes the requirements for device specifications and enhances the spectral efficiency by enabling the use of high-level QAM. The achieved performance can approach the theoretical limits using practical components.
Resumo:
Future optical networks will require the implementation of very high capacity (and therefore spectral efficient) technologies. Multi-carrier systems, such as Orthogonal Frequency Division Multiplexing (OFDM) and Coherent WDM (CoWDM), are promising candidates. In this paper, we present analytical, numerical, and experimental investigations of the impact of the relative phases between optical subcarriers of CoWDM systems, as well as the effect that the number of independently modulated subcarriers can have on the performance. We numerically demonstrate a five-subcarrier and three-subcarrier 10-GBd CoWDM system with direct detected amplitude shift keying (ASK) and differentially/coherently detected (D) phase shift keying (PSK). The simulation results are compared with experimental measurements of a 32-Gbit/s DPSK CoWDM system in two configurations. The first configuration was a practical 3-modulator array where all three subcarriers were independently modulated, the second configuration being a traditional 2-modulator odd/even configuration, where only odd and even subcarriers were independently modulated. Simulation and experimental results both indicate that the independent modulation implementation has a greater dependency on the relative phases between subcarriers, with a stronger penalty for the center subcarrier than the odd/even modulation scheme.
Resumo:
Uncertainty can be defined as the difference between information that is represented in an executing system and the information that is both measurable and available about the system at a certain point in its life-time. A software system can be exposed to multiple sources of uncertainty produced by, for example, ambiguous requirements and unpredictable execution environments. A runtime model is a dynamic knowledge base that abstracts useful information about the system, its operational context and the extent to which the system meets its stakeholders' needs. A software system can successfully operate in multiple dynamic contexts by using runtime models that augment information available at design-time with information monitored at runtime. This chapter explores the role of runtime models as a means to cope with uncertainty. To this end, we introduce a well-suited terminology about models, runtime models and uncertainty and present a state-of-the-art summary on model-based techniques for addressing uncertainty both at development- and runtime. Using a case study about robot systems we discuss how current techniques and the MAPE-K loop can be used together to tackle uncertainty. Furthermore, we propose possible extensions of the MAPE-K loop architecture with runtime models to further handle uncertainty at runtime. The chapter concludes by identifying key challenges, and enabling technologies for using runtime models to address uncertainty, and also identifies closely related research communities that can foster ideas for resolving the challenges raised. © 2014 Springer International Publishing.
Resumo:
We perform optimisation of bi-directionally pumped dispersion compensating Raman amplifier modules. Optimal forward and backward pump powers for basic configurations using different commercially available fibers are presented for both single- and multi-channel systems. Optical signal-to-noise ratio improvement of up to 8 dB is achieved as a result of optimisation. © 2003 Published by Elsevier B.V.
Resumo:
We control a population of interacting software agents. The agents have a strategy, and receive a payoff for executing that strategy. Unsuccessful agents become extinct. We investigate the repercussions of maintaining a diversity of agents. There is often no economic rationale for this. If maintaining diversity is to be successful, i.e. without lowering too much the payoff for the non-endangered strategies, it has to go on forever, because the non-endangered strategies still get a good payoff, so that they continue to thrive, and continue to endanger the endangered strategies. This is not sustainable if the number of endangered ones is of the same order as the number of non-endangered ones. We also discuss niches, islands. Finally, we combine learning as adaptation of individual agents with learning via selection in a population. © Springer-Verlag Berlin Heidelberg 2003.
Resumo:
The purpose of the paper is to explore the possibility of applying existing formal theories of description and design of distributed and concurrent systems to interaction protocols for real-time multi-agent systems. In particular it is shown how the language PRALU, proposed for description of parallel logical control algorithms and rooted in the Petri net formalism, can be used for the modeling of complex concurrent conversations between agents in a multi-agent system. It is demonstrated with a known example of English auction on how to specify an agent interaction protocol using considered means.
Resumo:
In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.
Resumo:
Most experiments in particle physics are scattering experiments, the analysis of which leads to masses, scattering phases, decay widths and other properties of one or multi-particle systems. Until the advent of Lattice Quantum Chromodynamics (LQCD) it was difficult to compare experimental results on low energy hadron-hadron scattering processes to the predictions of QCD, the current theory of strong interactions. The reason being, at low energies the QCD coupling constant becomes large and the perturbation expansion for scattering; amplitudes does not converge. To overcome this, one puts the theory onto a lattice, imposes a momentum cutoff, and computes the integral numerically. For particle masses, predictions of LQCD agree with experiment, but the area of decay widths is largely unexplored. ^ LQCD provides ab initio access to unusual hadrons like exotic mesons that are predicted to contain real gluonic structure. To study decays of these type resonances the energy spectra of a two-particle decay state in a finite volume of dimension L can be related to the associated scattering phase shift δ(k) at momentum k through exact formulae derived by Lüscher. Because the spectra can be computed using numerical Monte Carlo techniques, the scattering phases can thus be determined using Lüscher's formulae, and the corresponding decay widths can be found by fitting Breit-Wigner functions. ^ Results of such a decay width calculation for an exotic hybrid( h) meson (JPC = 1-+) are presented for the decay channel h → πa 1. This calculation employed Lüscher's formulae and an approximation of LQCD called the quenched approximation. Energy spectra for the h and πa1 systems were extracted using eigenvalues of a correlation matrix, and the corresponding scattering phase shifts were determined for a discrete set of πa1 momenta. Although the number of phase shift data points was sparse, fits to a Breit-Wigner model were made, resulting in a decay width of about 60 MeV. ^
Resumo:
Educational Data Mining is an application domain in artificial intelligence area that has been extensively explored nowadays. Technological advances and in particular, the increasing use of virtual learning environments have allowed the generation of considerable amounts of data to be investigated. Among the activities to be treated in this context exists the prediction of school performance of the students, which can be accomplished through the use of machine learning techniques. Such techniques may be used for student’s classification in predefined labels. One of the strategies to apply these techniques consists in their combination to design multi-classifier systems, which efficiency can be proven by results achieved in other studies conducted in several areas, such as medicine, commerce and biometrics. The data used in the experiments were obtained from the interactions between students in one of the most used virtual learning environments called Moodle. In this context, this paper presents the results of several experiments that include the use of specific multi-classifier systems systems, called ensembles, aiming to reach better results in school performance prediction that is, searching for highest accuracy percentage in the student’s classification. Therefore, this paper presents a significant exploration of educational data and it shows analyzes of relevant results about these experiments.
Resumo:
F. Meneguzzi thanks Fundaç ao de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Brazil) for the financial support through the ACI program (Grant ref. 3541-2551/12-0) and the ARD program (Grant ref. 12/0808-5), as well as Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the Universal Call (Grant ref. 482156/2013-9) and PQ fellowship (Grant ref. 306864/2013-4). N. Oren and W.W. Vasconcelos acknowledge the support of the Engineering and Physical Sciences Research Council (EPSRC, UK) within the research project “Scrutable Autonomous Systems” (SAsSY11, Grant ref. EP/J012084/1).