771 resultados para Multi-relational data mining


Relevância:

100.00% 100.00%

Publicador:

Resumo:

People store data of the most different daily events, to know yourself, detect behaviors, predict events and have an strongly knowledge to take decisions. The growth of the events, results in a large amount of data colected and this data needs to be processed to get value information. This data have a temporal component from the collect process (daily, monthly or annualy) and this need to be consider on the exploration. The exploration based on temporal component can be uni-scale or multi-scale. The data mining goes toward to extract knowledge from large databases and if combined with visualization tools, the data mining can be more effective to detect information. This visualization tools display data and allow user to manipulate and change it by interaction features toward your goal. The user can combine tools and combine the steps of visualization among the tools through messages. This monograph aim to insert interactivity on AdaptaVis architecture model, developed by Shimabukuro (2004), the InfoVis, then extends its ability of exploration and provide a consistent base for the user handle data and extract information

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In [1], the authors proposed a framework for automated clustering and visualization of biological data sets named AUTO-HDS. This letter is intended to complement that framework by showing that it is possible to get rid of a user-defined parameter in a way that the clustering stage can be implemented more accurately while having reduced computational complexity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The attributes describing a data set may often be arranged in meaningful subsets, each of which corresponds to a different aspect of the data. An unsupervised algorithm (SCAD) that simultaneously performs fuzzy clustering and aspects weighting was proposed in the literature. However, SCAD may fail and halt given certain conditions. To fix this problem, its steps are modified and then reordered to reduce the number of parameters required to be set by the user. In this paper we prove that each step of the resulting algorithm, named ASCAD, globally minimizes its cost-function with respect to the argument being optimized. The asymptotic analysis of ASCAD leads to a time complexity which is the same as that of fuzzy c-means. A hard version of the algorithm and a novel validity criterion that considers aspect weights in order to estimate the number of clusters are also described. The proposed method is assessed over several artificial and real data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente lavoro nasce dall’obiettivo di individuare strumenti statistici per indagare, sotto diversi aspetti, il flusso di lavoro di un Laboratorio di Anatomia Patologica. Il punto di partenza dello studio è l’ambiente di lavoro di ATHENA, software gestionale utilizzato nell’Anatomia Patologica, sviluppato dalla NoemaLife S.p.A., azienda specializzata nell’informatica per la sanità. A partire da tale applicativo è stato innanzitutto formalizzato il workflow del laboratorio (Capitolo 2), nelle sue caratteristiche e nelle sue possibili varianti, identificando le operazioni principali attraverso una serie di “fasi”. Proprio le fasi, unitamente alle informazioni addizionali ad esse associate, saranno per tutta la trattazione e sotto diversi punti di vista al centro dello studio. L’analisi che presentiamo è stata per completezza sviluppata in due scenari che tengono conto di diversi aspetti delle informazioni in possesso. Il primo scenario tiene conto delle sequenze di fasi, che si presentano nel loro ordine cronologico, comprensive di eventuali ripetizioni o cicli di fasi precedenti alla conclusione. Attraverso l’elaborazione dei dati secondo specifici formati è stata svolta un’iniziale indagine grafica di Workflow Mining (Capitolo 3) grazie all’ausilio di EMiT, un software che attraverso un set di log di processo restituisce graficamente il flusso di lavoro che li rappresenta. Questa indagine consente già di valutare la completezza dell’utilizzo di un applicativo rispetto alle sue potenzialità. Successivamente, le stesse fasi sono state elaborate attraverso uno specifico adattamento di un comune algoritmo di allineamento globale, l’algoritmo Needleman-Wunsch (Capitolo 4). L’utilizzo delle tecniche di allineamento applicate a sequenze di processo è in grado di individuare, nell’ambito di una specifica codifica delle fasi, le similarità tra casi clinici. L’algoritmo di Needleman-Wunsch individua le identità e le discordanze tra due stringhe di caratteri, assegnando relativi punteggi che portano a valutarne la similarità. Tale algoritmo è stato opportunamente modificato affinché possa riconoscere e penalizzare differentemente cicli e ripetizioni, piuttosto che fasi mancanti. Sempre in ottica di allineamento sarà utilizzato l’algoritmo euristico Clustal, che a partire da un confronto pairwise tra sequenze costruisce un dendrogramma rappresentante graficamente l’aggregazione dei casi in funzione della loro similarità. Proprio il dendrogramma, per la sua struttura grafica ad albero, è in grado di mostrare intuitivamente l’andamento evolutivo della similarità di un pattern di casi. Il secondo scenario (Capitolo 5) aggiunge alle sequenze l’informazione temporale in termini di istante di esecuzione di ogni fase. Da un dominio basato su sequenze di fasi, si passa dunque ad uno scenario di serie temporali. I tempi rappresentano infatti un dato essenziale per valutare la performance di un laboratorio e per individuare la conformità agli standard richiesti. Il confronto tra i casi è stato effettuato con diverse modalità, in modo da stabilire la distanza tra tutte le coppie sotto diversi aspetti: le sequenze, rappresentate in uno specifico sistema di riferimento, sono state confrontate in base alla Distanza Euclidea ed alla Dynamic Time Warping, in grado di esprimerne le discordanze rispettivamente temporali, di forma e, dunque, di processo. Alla luce dei risultati e del loro confronto, saranno presentate già in questa fase le prime valutazioni sulla pertinenza delle distanze e sulle informazioni deducibili da esse. Il Capitolo 6 rappresenta la ricerca delle correlazioni tra elementi caratteristici del processo e la performance dello stesso. Svariati fattori come le procedure utilizzate, gli utenti coinvolti ed ulteriori specificità determinano direttamente o indirettamente la qualità del servizio erogato. Le distanze precedentemente calcolate vengono dunque sottoposte a clustering, una tecnica che a partire da un insieme eterogeneo di elementi individua famiglie o gruppi simili. L’algoritmo utilizzato sarà l’UPGMA, comunemente applicato nel clustering in quanto, utilizzando, una logica di medie pesate, porta a clusterizzazioni pertinenti anche in ambiti diversi, dal campo biologico a quello industriale. L’ottenimento dei cluster potrà dunque essere finalmente sottoposto ad un’attività di ricerca di correlazioni utili, che saranno individuate ed interpretate relativamente all’attività gestionale del laboratorio. La presente trattazione propone quindi modelli sperimentali adattati al caso in esame ma idealmente estendibili, interamente o in parte, a tutti i processi che presentano caratteristiche analoghe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'innovazione delle tecnologie di sequenziamento negli ultimi anni ha reso possibile la catalogazione delle varianti genetiche nei campioni umani, portando nuove scoperte e comprensioni nella ricerca medica, farmaceutica, dell'evoluzione e negli studi sulla popolazione. La quantità di sequenze prodotta è molto cospicua, e per giungere all'identificazione delle varianti sono necessari diversi stadi di elaborazione delle informazioni genetiche in cui, ad ogni passo, vengono generate ulteriori informazioni. Insieme a questa immensa accumulazione di dati, è nata la necessità da parte della comunità scientifica di organizzare i dati in repository, dapprima solo per condividere i risultati delle ricerche, poi per permettere studi statistici direttamente sui dati genetici. Gli studi su larga scala coinvolgono quantità di dati nell'ordine dei petabyte, il cui mantenimento continua a rappresentare una sfida per le infrastrutture. Per la varietà e la quantità di dati prodotti, i database giocano un ruolo di primaria importanza in questa sfida. Modelli e organizzazione dei dati in questo campo possono fare la differenza non soltanto per la scalabilità, ma anche e soprattutto per la predisposizione al data mining. Infatti, la memorizzazione di questi dati in file con formati quasi-standard, la dimensione di questi file, e i requisiti computazionali richiesti, rendono difficile la scrittura di software di analisi efficienti e scoraggiano studi su larga scala e su dati eterogenei. Prima di progettare il database si è perciò studiata l’evoluzione, negli ultimi vent’anni, dei formati quasi-standard per i flat file biologici, contenenti metadati eterogenei e sequenze nucleotidiche vere e proprie, con record privi di relazioni strutturali. Recentemente questa evoluzione è culminata nell’utilizzo dello standard XML, ma i flat file delimitati continuano a essere gli standard più supportati da tools e piattaforme online. È seguita poi un’analisi dell’organizzazione interna dei dati per i database biologici pubblici. Queste basi di dati contengono geni, varianti genetiche, strutture proteiche, ontologie fenotipiche, relazioni tra malattie e geni, relazioni tra farmaci e geni. Tra i database pubblici studiati rientrano OMIM, Entrez, KEGG, UniProt, GO. L'obiettivo principale nello studio e nella modellazione del database genetico è stato quello di strutturare i dati in modo da integrare insieme i dati eterogenei prodotti e rendere computazionalmente possibili i processi di data mining. La scelta di tecnologia Hadoop/MapReduce risulta in questo caso particolarmente incisiva, per la scalabilità garantita e per l’efficienza nelle analisi statistiche più complesse e parallele, come quelle riguardanti le varianti alleliche multi-locus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il problema relativo alla predizione, la ricerca di pattern predittivi all‘interno dei dati, è stato studiato ampiamente. Molte metodologie robuste ed efficienti sono state sviluppate, procedimenti che si basano sull‘analisi di informazioni numeriche strutturate. Quella testuale, d‘altro canto, è una tipologia di informazione fortemente destrutturata. Quindi, una immediata conclusione, porterebbe a pensare che per l‘analisi predittiva su dati testuali sia necessario sviluppare metodi completamente diversi da quelli ben noti dalle tecniche di data mining. Un problema di predizione può essere risolto utilizzando invece gli stessi metodi : dati testuali e documenti possono essere trasformati in valori numerici, considerando per esempio l‘assenza o la presenza di termini, rendendo di fatto possibile una utilizzazione efficiente delle tecniche già sviluppate. Il text mining abilita la congiunzione di concetti da campi di applicazione estremamente eterogenei. Con l‘immensa quantità di dati testuali presenti, basti pensare, sul World Wide Web, ed in continua crescita a causa dell‘utilizzo pervasivo di smartphones e computers, i campi di applicazione delle analisi di tipo testuale divengono innumerevoli. L‘avvento e la diffusione dei social networks e della pratica di micro blogging abilita le persone alla condivisione di opinioni e stati d‘animo, creando un corpus testuale di dimensioni incalcolabili aggiornato giornalmente. Le nuove tecniche di Sentiment Analysis, o Opinion Mining, si occupano di analizzare lo stato emotivo o la tipologia di opinione espressa all‘interno di un documento testuale. Esse sono discipline attraverso le quali, per esempio, estrarre indicatori dello stato d‘animo di un individuo, oppure di un insieme di individui, creando una rappresentazione dello stato emotivo sociale. L‘andamento dello stato emotivo sociale può condizionare macroscopicamente l‘evolvere di eventi globali? Studi in campo di Economia e Finanza Comportamentale assicurano un legame fra stato emotivo, capacità nel prendere decisioni ed indicatori economici. Grazie alle tecniche disponibili ed alla mole di dati testuali continuamente aggiornati riguardanti lo stato d‘animo di milioni di individui diviene possibile analizzare tali correlazioni. In questo studio viene costruito un sistema per la previsione delle variazioni di indici di borsa, basandosi su dati testuali estratti dalla piattaforma di microblogging Twitter, sotto forma di tweets pubblici; tale sistema include tecniche di miglioramento della previsione basate sullo studio di similarità dei testi, categorizzandone il contributo effettivo alla previsione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we will discuss about a project started by the Emilia-Romagna Regional Government regarding the manage of the public transport. In particular we will perform a data mining analysis on the data-set of this project. After introducing the Weka software used to make our analysis, we will discover the most useful data mining techniques and algorithms; and we will show how these results can be used to violate the privacy of the same public transport operators. At the end, despite is off topic of this work, we will spend also a few words about how it's possible to prevent this kind of attack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sviluppo e analisi di un dataset campione, composto da circa 3 mln di entry ed estratto da un data warehouse di informazioni riguardanti il consumo energetico di diverse smart home.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time we present a multi-proxy data set for the Russian Altai, consisting of Siberian larch tree-ring width (TRW), latewood density (MXD), δ13C and δ18O in cellulose chronologies obtained for the period 1779–2007 and cell wall thickness (CWT) for 1900–2008. All of these parameters agree well between each other in the high-frequency variability, while the low-frequency climate information shows systematic differences. The correlation analysis with temperature and precipitation data from the closest weather station and gridded data revealed that annual TRW, MXD, CWT, and δ13C data contain a strong summer temperature signal, while δ18O in cellulose represents a mixed summer and winter temperature and precipitation signal. The temperature and precipitation reconstructions from the Belukha ice core and Teletskoe lake sediments were used to investigate the correspondence of different independent proxies. Low frequency patterns in TRW and δ13C chronologies are consistent with temperature reconstructions from nearby Belukha ice core and Teletskoe lake sediments showing a pronounced warming trend in the last century. Their combination could be used for the regional temperature reconstruction. The long-term δ18O trend agrees with the precipitation reconstruction from the Teletskoe lake sediment indicating more humid conditions during the twentieth century. Therefore, these two proxies could be combined for the precipitation reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

210Pb, 137Cs and 14C dated sediments of two late Holocene landslide lakes in the Provincial Park Lagunas de Yala (Laguna Rodeo, Laguna Comedero, 24°06′S, 65°30′W, 2100 m asl, northwestern Argentina) reveal a high-resolution multi-proxy data set of climate change and human impact for the past ca. 2000 years. Comparison of the lake sediment data set for the 20th century (sediment mass accumulation rates MARs, pollen spectra, nutrient and charcoal fluxes) with independent dendroecological data from the catchment (fire scars, tree growth) and long regional precipitation series (from 1934 onwards) show that (1) the lake sediment data set is internally highly consistent and compares well with independent data sets, (2) the chronology of the sediment is reliable, (3) large fires (1940s, 1983/1984–1989) as documented in the local fire scar frequency are recorded in the charcoal flux to the lake sediments and coincide with low wet-season precipitation rates (e.g., 1940s, 1983/1984) and/or high interannual precipitation variability (late 1940s), and (4) the regional increase in precipitation after 1970 is recorded in an increase in the MARs (L. Rodeo from 100 to 390 mg cm−2 yr−1) and in an increase in fern spores reflecting wet vegetation. The most significant change in MARs and nutrient fluxes (Corg and P) of the past 2000 years is observed with the transition from the Inca Empire to the Spanish Conquest around 1600 AD. Compared with the pre-17th century conditions, MARs increased by a factor of ca. 5 to >8 (to 800 +130, −280 mg cm−2 yr−1), PO4 fluxes increased by a factor of 7, and Corg fluxes by a factor of 10.5 for the time between 1640 and 1930 AD. 17th to 19th century MARs and nutrient fluxes also exceed 20th century values. Excess Pb deposition as indicated by a significant increase in Pb/Zr and Pb/Rb ratios in the sediments after the 1950s coincides with a rapid expansion of the regional mining industry. Excess Pb is interpreted as atmospheric deposition and direct human impact due to Pb smelting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.