829 resultados para Multi-input fuzzy inference system
Resumo:
This technical note investigates the controllability of the linearized dynamics of the multilink inverted pendulum as the number of links and the number and location of actuators changes. It is demonstrated that, in some instances, there exist sets of parameter values that render the system uncontrollable and so usual methods for assessing controllability are difficult to employ. To assess the controllability, a theorem on strong structural controllability for single-input systems is extended to the multiinput case.
Resumo:
Wireless technology based pervasive healthcare has been proposed in many applications such as disease management and accident prevention for cost saving and promoting citizen’s wellbeing. However, the emphasis so far is on the artefacts with limited attentions to guiding the development of an effective and efficient solution for pervasive healthcare. Therefore, this paper aims to propose a framework of multi-agent systems design for pervasive healthcare by adopting the concept of pervasive informatics and using the methods of organisational semiotics. The proposed multi-agent system for pervasive healthcare utilises sensory information to support healthcare professionals for providing appropriate care. The key contributions contain theoretical aspect and practical aspect. In theory, this paper articulates the information interactions between the pervasive healthcare environment and stakeholders by using the methods of organisational semiotics; in practice, the proposed framework improves the healthcare quality by providing appropriate medical attentions when and as needed. In this paper, both systems and functional architecture of the multi-agent system are elaborated with the use of wireless technologies such as RFID and wireless sensor networks. The future study will focus on the implementation of the proposed framework.
Resumo:
This work proposes a unified neurofuzzy modelling scheme. To begin with, the initial fuzzy base construction method is based on fuzzy clustering utilising a Gaussian mixture model (GMM) combined with the analysis of covariance (ANOVA) decomposition in order to obtain more compact univariate and bivariate membership functions over the subspaces of the input features. The mean and covariance of the Gaussian membership functions are found by the expectation maximisation (EM) algorithm with the merit of revealing the underlying density distribution of system inputs. The resultant set of membership functions forms the basis of the generalised fuzzy model (GFM) inference engine. The model structure and parameters of this neurofuzzy model are identified via the supervised subspace orthogonal least square (OLS) learning. Finally, instead of providing deterministic class label as model output by convention, a logistic regression model is applied to present the classifier’s output, in which the sigmoid type of logistic transfer function scales the outputs of the neurofuzzy model to the class probability. Experimental validation results are presented to demonstrate the effectiveness of the proposed neurofuzzy modelling scheme.
Resumo:
Projektet omfattade undersökning och framtagande av ett solcellssystem med förmåga att försörja ett FTX-system i ett flerbostadshus från miljonprogrammet med el. För att kunna bedöma storlek och utformning av komponenter har information tagits genom: Informationssökning via databaser, kurslitteratur och intervjuer Simuleringar av solceller i datorprogrammet PVSYST Modulering av ventilationskanaler i datorprogrammet MagiCAD Syftet var främst att undersöka om det gick att få fram ett teoretiskt fungerande system med avseende på både solceller och ventilation. Beroende på vad resultatet blev skulle även ekonomin i projektet undersökas. Undersökningen visade att det teoretiskt ska gå att installera solceller för elframställning som klarar av att täcka FTX-systemets elbehov på årsbasis. Solcellerna bedöms även producera tillräckligt med el för viss övrig elkrävande utrustning under stora delar av året. Det visade sig även att det skulle gå att få solcellerna ekonomiskt lönsamma om en kalkyltid på 14 år används. Metoden som använts för dessa resultat är noga beskriven och är med små förändringar tillämpbar för ett stort antal byggnader i det svenska byggnadsbeståndet. En viktig slutsats är att om fastighetsägarna kan se 15 år fram i tiden för en investering i solenergi, skulle det innebära inte bara miljömässiga utan även ekonomiska vinster. Det finns redan idag kunnande, teknik och produkter för att utvinna en stor del av fastigheternas elbehov genom solens energi.
Resumo:
The Intelligent Algorithm is designed for theusing a Battery source. The main function is to automate the Hybrid System through anintelligent Algorithm so that it takes the decision according to the environmental conditionsfor utilizing the Photovoltaic/Solar Energy and in the absence of this, Fuel Cell energy isused. To enhance the performance of the Fuel Cell and Photovoltaic Cell we used batterybank which acts like a buffer and supply the current continuous to the load. To develop the main System whlogic based controller was used. Fuzzy Logic based controller used to develop this system,because they are chosen to be feasible for both controlling the decision process and predictingthe availability of the available energy on the basis of current Photovoltaic and Battery conditions. The Intelligent Algorithm is designed to optimize the performance of the system and to selectthe best available energy source(s) in regard of the input parameters. The enhance function of these Intelligent Controller is to predict the use of available energy resources and turn on thatparticular source for efficient energy utilization. A fuzzy controller was chosen to take thedecisions for the efficient energy utilization from the given resources. The fuzzy logic basedcontroller is designed in the Matlab-Simulink environment. Initially, the fuzzy based ruleswere built. Then MATLAB based simulation system was designed and implemented. Thenthis whole proposed model is simulated and tested for the accuracy of design and performanceof the system.
Resumo:
A lógica fuzzy admite infinitos valores lógicos intermediários entre o falso e o verdadeiro. Com esse princípio, foi elaborado neste trabalho um sistema baseado em regras fuzzy, que indicam o índice de massa corporal de animais ruminantes com objetivo de obter o melhor momento para o abate. O sistema fuzzy desenvolvido teve como entradas as variáveis massa e altura, e a saída um novo índice de massa corporal, denominado Índice de Massa Corporal Fuzzy (IMC Fuzzy), que poderá servir como um sistema de detecção do momento de abate de bovinos, comparando-os entre si através das variáveis linguísticas )Muito BaixaM, ,BaixaB, ,MédiaM, ,AltaA e Muito AltaM. Para a demonstração e aplicação da utilização deste sistema fuzzy, foi feita uma análise de 147 vacas da raça Nelore, determinando os valores do IMC Fuzzy para cada animal e indicando a situação de massa corpórea de todo o rebanho. A validação realizada do sistema foi baseado em uma análise estatística, utilizando o coeficiente de correlação de Pearson 0,923, representando alta correlação positiva e indicando que o método proposto está adequado. Desta forma, o presente método possibilita a avaliação do rebanho, comparando cada animal do rebanho com seus pares do grupo, fornecendo desta forma um método quantitativo de tomada de decisão para o pecuarista. Também é possível concluir que o presente trabalho estabeleceu um método computacional baseado na lógica fuzzy capaz de imitar parte do raciocínio humano e interpretar o índice de massa corporal de qualquer tipo de espécie bovina e em qualquer região do País.
Resumo:
This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification
Resumo:
Fiber reinforced polymer composites have been widely applied in the aeronautical field. However, composite processing, which uses unlocked molds, should be avoided in view of the tight requirements and also due to possible environmental contamination. To produce high performance structural frames meeting aeronautical reproducibility and low cost criteria, the Brazilian industry has shown interest to investigate the resin transfer molding process (RTM) considering being a closed-mold pressure injection system which allows faster gel and cure times. Due to the fibrous composite anisotropic and non homogeneity characteristics, the fatigue behavior is a complex phenomenon quite different from to metals materials crucial to be investigated considering the aeronautical application. Fatigue sub-scale specimens of intermediate modulus carbon fiber non-crimp multi-axial reinforcement and epoxy mono-component system composite were produced according to the ASTM 3039 D. Axial fatigue tests were carried out according to ASTM D 3479. A sinusoidal load of 10 Hz frequency and load ratio R = 0.1. It was observed a high fatigue interval obtained for NCF/RTM6 composites. Weibull statistical analysis was applied to describe the failure probability of materials under cyclic loads and fractures pattern was observed by scanning electron microscopy. (C) 2010 Published by Elsevier Ltd.
Resumo:
In almost all cases, the goal of the design of automatic control systems is to obtain the parameters of the controllers, which are described by differential equations. In general, the controller is artificially built and it is possible to update its initial conditions. In the design of optimal quadratic regulators, the initial conditions of the controller can be changed in an optimal way and they can improve the performance of the controlled system. Following this idea, a LNU-based design procedure to update the initial conditions of PI controllers, considering the nonlinear plant described by Takagi-Sugeno fuzzy models, is presented. The importance of the proposed method is that it also allows other specifications, such as, the decay rate and constraints on control input and output. The application in the control of an inverted pendulum illustrates the effectively of proposed method.
Resumo:
Neste trabalho é proposta uma metodologia de rastreamento de sinais e rejeição de distúrbios aplicada a sistemas não-lineares. Para o projeto do sistema de rastreamento, projeta-se os controladores fuzzy M(a) e N(a) que minimizam o limitante superior da norma H∞ entre o sinal de referência r(t) e o sinal de erro de rastreamento e(t), sendo e(t) a diferença entre a entrada de referência e a saída do sistema z(t). No método de rejeição de distúrbio utiliza-se a realimentação dinâmica da saída através de um controlador fuzzy Kc(a) que minimiza o limitante superior da norma H∞ entre o sinal de entrada exógena w(t) e o sinal de saída z(t). O procedimento de projeto proposto considera as não-linearidades da planta através dos modelos fuzzy Takagi-Sugeno. Os métodos são equacionados utilizando-se inequações matriciais lineares (LMIs), que quando factíveis, podem ser facilmente solucionados por algoritmos de convergência polinomial. Por fim, um exemplo ilustra a viabilidade da metodologia proposta.