975 resultados para Multi-Cloud
Resumo:
In the electricity market environment, coordination of system reliability and economics of a power system is of great significance in determining the available transfer capability (ATC). In addition, the risks associated with uncertainties should be properly addressed in the ATC determination process for risk-benefit maximization. Against this background, it is necessary that the ATC be optimally allocated and utilized within relative security constraints. First of all, the non-sequential Monte Carlo stimulation is employed to derive the probability density distribution of ATC of designated areas incorporating uncertainty factors. Second, on the basis of that, a multi-objective optimization model is formulated to determine the multi-area ATC so as to maximize the risk-benefits. Then, the solution to the developed model is achieved by the fast non-dominated sorting (NSGA-II) algorithm, which could decrease the risk caused by uncertainties while coordinating the ATCs of different areas. Finally, the IEEE 118-bus test system is served for demonstrating the essential features of the developed model and employed algorithm.
Resumo:
Retaining customers is a relevant topic throughout all service industries. However, only limited attention has been directed towards studying the antecedents of subscription renewal in the context of operational cloud enterprise systems. Cloud services have historically been offered as subscription-based services with the (theoretical) possibility of seamless service cancellation, in contrast to classical IT-Outsourcing contracts or license-based software installations of on-premise enterprise systems. In this work, we investigate the central concept of subscription renewal by focusing on different facets of IS success and their relevance for distinct employee cohorts. Analyzing inter-cohort differences has strong practical implications, as it helps IT vendors to focus on specific IT-related factors when trying to retain customers. Therefore an empirical study was undertaken. The hypotheses were developed on an individual level and tested using survey responses of IT decision makers within companies which adopted cloud enterprise systems. Gathered data was then analyzed using PLS. The results show that subscription renewal intention of the strategic cohort is mainly based on perceived system quality, whereas information quality explains most of the variance of subscription renewal in the management cohort. Beneath the cloud enterprise systems specific contributions, the work adds to the theoretical body of research related to IS success and IS continuation, as well as stakeholder perspectives.
Resumo:
Integrated multi-professional teams are crucial to ongoing health system development and need to be responsive to the increasing demands of health care such as the burgeoning rate of chronic diseases. Integrated multi-professional teams also constitute a fundamental pillar of health service delivery in primary care worldwide. The aim of these teams is to deliver care beyond simple co-location of healthcare providers, through implementing integrated practice together, rather than as a group of independent disciplines. The challenges of developing and implementing integrated multi-professional teams in busy primary care clinical environments is addressed in this paper through a conceptual framework specifically designed for primary care and a case study analysis of examples of teamwork in Australian primary care.
Resumo:
CubIT is a multi-user, large-scale presentation and collaboration framework installed at the Queensland University of Technology’s (QUT) Cube facility, an interactive facility made up 48 multi-touch screens and very large projected display screens. The CubIT system allows users to upload, interact with and share their own content on the Cube’s display surfaces. This paper outlines the collaborative features of CubIT which are implemented via three user interfaces, a large-screen multi-touch interface, a mobile phone and tablet application and a web-based content management system. Each of these applications plays a different role and supports different interaction mechanisms supporting a wide range of collaborative features including multi-user shared workspaces, drag and drop upload and sharing between users, session management and dynamic state control between different parts of the system.
Resumo:
Bactrocera dorsalis sensu stricto, B. papayae, B. philippinensis and B. carambolae are serious pest fruit fly species of the B. dorsalis complex that predominantly occur in south-east Asia and the Pacific. Identifying molecular diagnostics has proven problematic for these four taxa, a situation that cofounds biosecurity and quarantine efforts and which may be the result of at least some of these taxa representing the same biological species. We therefore conducted a phylogenetic study of these four species (and closely related outgroup taxa) based on the individuals collected from a wide geographic range; sequencing six loci (cox1, nad4-3′, CAD, period, ITS1, ITS2) for approximately 20 individuals from each of 16 sample sites. Data were analysed within maximum likelihood and Bayesian phylogenetic frameworks for individual loci and concatenated data sets for which we applied multiple monophyly and species delimitation tests. Species monophyly was measured by clade support, posterior probability or bootstrap resampling for Bayesian and likelihood analyses respectively, Rosenberg's reciprocal monophyly measure, P(AB), Rodrigo's (P(RD)) and the genealogical sorting index, gsi. We specifically tested whether there was phylogenetic support for the four 'ingroup' pest species using a data set of multiple individuals sampled from a number of populations. Based on our combined data set, Bactrocera carambolae emerges as a distinct monophyletic clade, whereas B. dorsalis s.s., B. papayae and B. philippinensis are unresolved. These data add to the growing body of evidence that B. dorsalis s.s., B. papayae and B. philippinensis are the same biological species, which poses consequences for quarantine, trade and pest management.
Resumo:
Project work has grown significantly in volume and recognition in recent decades as projects have ‘become a common form of work organization in all sectors of the economy’ (Lindgren & Packendorff, 2006: 841). This increase in project-based work is just one of the many changes that have been affecting the nature of work, the employment relationship and the associated conceptualization and experience of careers (Baruch, 2004b; Söderlund & Bredin, 2006). A career can be defined as a process of development along a path of work experience and roles in one or more organizations (Baruch & Rosenstein, 1992), and careers involving project-based work take place within multi layered institutional settings. Projects are generally undertaken by small temporary organizations (Ekstedt, Lundin, Söderholm & Wirdenius, 1999; Pettigrew, 2003; Söderlund, 2012) which in turn may form part of larger, permanent entities; involve people drawn from a number of disciplines and organizations; or be formed as partnerships, joint ventures or strategic alliances between two or more organizations (Scott, 2007).
Resumo:
Automated crowd counting has become an active field of computer vision research in recent years. Existing approaches are scene-specific, as they are designed to operate in the single camera viewpoint that was used to train the system. Real world camera networks often span multiple viewpoints within a facility, including many regions of overlap. This paper proposes a novel scene invariant crowd counting algorithm that is designed to operate across multiple cameras. The approach uses camera calibration to normalise features between viewpoints and to compensate for regions of overlap. This compensation is performed by constructing an 'overlap map' which provides a measure of how much an object at one location is visible within other viewpoints. An investigation into the suitability of various feature types and regression models for scene invariant crowd counting is also conducted. The features investigated include object size, shape, edges and keypoints. The regression models evaluated include neural networks, K-nearest neighbours, linear and Gaussian process regresion. Our experiments demonstrate that accurate crowd counting was achieved across seven benchmark datasets, with optimal performance observed when all features were used and when Gaussian process regression was used. The combination of scene invariance and multi camera crowd counting is evaluated by training the system on footage obtained from the QUT camera network and testing it on three cameras from the PETS 2009 database. Highly accurate crowd counting was observed with a mean relative error of less than 10%. Our approach enables a pre-trained system to be deployed on a new environment without any additional training, bringing the field one step closer toward a 'plug and play' system.
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.
Resumo:
High-speed broadband internet access is widely recognised as a catalyst to social and economic development. However, the provision of broadband Internet services with the existing solutions to rural population, scattered over an extensive geographical area, remains both an economic and technical challenge. As a feasible solution, the Commonwealth Scientific and Industrial Research Organization (CSIRO) proposed a highly spectrally efficient, innovative and cost-effective fixed wireless broadband access technology, which uses analogue TV frequency spectrum and Multi-User MIMO (MUMIMO) technology with Orthogonal-Frequency-Division-Multiplexing (OFDM). MIMO systems have emerged as a promising solution for the increasing demand of higher data rates, better quality of service, and higher network capacity. However, the performance of MIMO systems can be significantly affected by different types of propagation environments e.g., indoor, outdoor urban, or outdoor rural and operating frequencies. For instance, large spectral efficiencies associated with MIMO systems, which assume a rich scattering environment in urban environments, may not be valid for all propagation environments, such as outdoor rural environments, due to the presence of less scatterer densities. Since this is the first time a MU-MIMO-OFDM fixed broadband wireless access solution is deployed in a rural environment, questions from both theoretical and practical standpoints arise; For example, what capacity gains are available for the proposed solution under realistic rural propagation conditions?. Currently, no comprehensive channel measurement and capacity analysis results are available for MU-MIMO-OFDM fixed broadband wireless access systems which employ large scale multiple antennas at the Access Point (AP) and analogue TV frequency spectrum in rural environments. Moreover, according to the literature, no deterministic MU-MIMO channel models exist that define rural wireless channels by accounting for terrain effects. This thesis fills the aforementioned knowledge gaps with channel measurements, channel modeling and comprehensive capacity analysis for MU-MIMO-OFDM fixed wireless broadband access systems in rural environments. For the first time, channel measurements were conducted in a rural farmland near Smithton, Tasmania using CSIRO's broadband wireless access solution. A novel deterministic MU-MIMO-OFDM channel model, which can be used for accurate performance prediction of rural MUMIMO channels with dominant Line-of-Sight (LoS) paths, was developed under this research. Results show that the proposed solution can achieve 43.7 bits/s/Hz at a Signal-to- Noise Ratio (SNR) of 20 dB in rural environments. Based on channel measurement results, this thesis verifies that the deterministic channel model accurately predicts channel capacity in rural environments with a Root Mean Square (RMS) error of 0.18 bits/s/Hz. Moreover, this study presents a comprehensive capacity analysis of rural MU-MIMOOFDM channels using experimental, simulated and theoretical models. Based on the validated deterministic model, further investigations on channel capacity and the eects of capacity variation, with different user distribution angles (θ) around the AP, were analysed. For instance, when SNR = 20dB, the capacity increases from 15.5 bits/s/Hz to 43.7 bits/s/Hz as θ increases from 10° to 360°. Strategies to mitigate these capacity degradation effects are also presented by employing a suitable user grouping method. Outcomes of this thesis have already been used by CSIRO scientists to determine optimum user distribution angles around the AP, and are of great significance for researchers and MU-MUMO-OFDM system developers to understand the advantages and potential capacity gains of MU-MIMO systems in rural environments. Also, results of this study are useful to further improve the performance of MU-MIMO-OFDM systems in rural environments. Ultimately, this knowledge contribution will be useful in delivering efficient, cost-effective high-speed wireless broadband systems that are tailor-made for rural environments, thus, improving the quality of life and economic prosperity of rural populations.
Resumo:
In this research, we suggest appropriate information technology (IT) governance structures to manage the cloud computing resources. The interest in acquiring IT resources a utility is gaining momentum. Cloud computing resources present organizations with opportunities to manage their IT expenditure on an ongoing basis, and are providing organizations access to modern IT resources to innovate and manage their continuity. However, cloud computing resources are no silver bullet. Organizations would need to have appropriate governance structures and policies in place to ensure its effective management and fit into existing business processes to leverage the promised opportunities. Using a mixed method design, we identified four possible governance structures for managing the cloud computing resources. These structures are a chief cloud officer, a cloud management committee, a cloud service facilitation centre, and a cloud relationship centre. These governance structures ensure appropriate direction of cloud computing resources from its acquisition to fit into the organizations business processes.
Resumo:
This research suggests information technology (IT) governance structures to manage cloud computing resources. The interest in acquiring IT resources as a utility from the cloud is gaining momentum. Cloud computing resources present organizations with opportunities to manage their IT expenditure on an ongoing basis, and are providing organizations access to modern IT resources to innovate and manage their continuity. However, cloud computing resources are no silver bullet. Organizations would need to have appropriate governance structures and policies in place to manage the cloud resources. The subsequent decisions from these governance structures will ensure effective management of cloud resources. This management will facilitate a better fit of cloud resources into organizations existing processes to achieve business (process-level) and financial (firm-level) objectives. Using a triangulation approach, we suggest four possible governance structures for managing the cloud computing resources. These structures are a chief cloud officer, a cloud management committee, a cloud service facilitation centre, and a cloud relationship centre. We also propose that these governance structures would relate to organizations cloud-related business objectives directly and indirectly to cloud-related financial objectives. Perceptive field survey data from actual and prospective cloud service adopters confirmed that the suggested structures would contribute directly to cloud-related business objectives and indirectly to cloud-related financial objectives.
Resumo:
A design for a cascaded multilevel DC-DC converter is proposed. The applications of a multilevel converter and the design issues involved in changing from a single converter to multiple converters are discussed. Implementation of the multilevel system using multiple Cuk converters is suggested and explanations of design decisions are given. The merits of the proposed design are discussed.
Resumo:
Increasing global competition, rapid technological changes, advances in manufacturing and information technology and discerning customers are forcing supply chains to adopt improvement practices that enable them to deliver high quality products at a lower cost and in a shorter period of time. A lean initiative is one of the most effective approaches toward achieving this goal. In the lean improvement process, it is critical to measure current and desired performance level in order to clearly evaluate the lean implementation efforts. Many attempts have tried to measure supply chain performance incorporating both quantitative and qualitative measures but failed to provide an effective method of measuring improvements in performances for dynamic lean supply chain situations. Therefore, the necessity of appropriate measurement of lean supply chain performance has become imperative. There are many lean tools available for supply chains; however, effectiveness of a lean tool depends on the type of the product and supply chain. One tool may be highly effective for a supply chain involved in high volume products but may not be effective for low volume products. There is currently no systematic methodology available for selecting appropriate lean strategies based on the type of supply chain and market strategy This thesis develops an effective method to measure the performance of supply chain consisting of both quantitative and qualitative metrics and investigates the effects of product types and lean tool selection on the supply chain performance Supply chain performance matrices and the effects of various lean tools over performance metrics mentioned in the SCOR framework have been investigated. A lean supply chain model based on the SCOR metric framework is then developed where non- lean and lean as well as quantitative and qualitative metrics are incorporated in appropriate metrics. The values of appropriate metrics are converted into triangular fuzzy numbers using similarity rules and heuristic methods. Data have been collected from an apparel manufacturing company for multiple supply chain products and then a fuzzy based method is applied to measure the performance improvements in supply chains. Using the fuzzy TOPSIS method, which chooses an optimum alternative to maximise similarities with positive ideal solutions and to minimise similarities with negative ideal solutions, the performances of lean and non- lean supply chain situations for three different apparel products have been evaluated. To address the research questions related to effective performance evaluation method and the effects of lean tools over different types of supply chains; a conceptual framework and two hypotheses are investigated. Empirical results show that implementation of lean tools have significant effects over performance improvements in terms of time, quality and flexibility. Fuzzy TOPSIS based method developed is able to integrate multiple supply chain matrices onto a single performance measure while lean supply chain model incorporates qualitative and quantitative metrics. It can therefore effectively measure the improvements for supply chain after implementing lean tools. It is demonstrated that product types involved in the supply chain and ability to select right lean tools have significant effect on lean supply chain performance. Future study can conduct multiple case studies in different contexts.
Resumo:
The purpose of this paper is to provide an evolutionary perspective of cloud computing (CC) by integrating two previously disparate literatures: CC and information technology outsourcing (ITO). We review the literature and develop a framework that highlights the demand for the CC service, benefits, risks, as well as risk mitigation strategies that are likely to influence the success of the service. CC success in organisations and as a technology overall is a function of (i) the outsourcing decision and supplier selection, (ii) contractual and relational governance, and (iii) industry standards and legal framework. Whereas CC clients have little control over standards and/or the legal framework, they are able to influence other factors to maximize the benefits while limiting the risks. This paper provides guidelines for (potential) cloud computing users with respect to the outsourcing decision, vendor selection, service-level-agreements, and other issues that need to be addressed when opting for CC services. We contribute to the literature by providing an evolutionary and holistic view of CC that draws on the extensive literature and theory of ITO. We conclude the paper with a number of research paths that future researchers can follow to advance the knowledge in this field.
Resumo:
An Application Specific Instruction-set Processor (ASIP) is a specialized processor tailored to run a particular application/s efficiently. However, when there are multiple candidate applications in the application’s domain it is difficult and time consuming to find optimum set of applications to be implemented. Existing ASIP design approaches perform this selection manually based on a designer’s knowledge. We help in cutting down the number of candidate applications by devising a classification method to cluster similar applications based on the special-purpose operations they share. This provides a significant reduction in the comparison overhead while resulting in customized ASIP instruction sets which can benefit a whole family of related applications. Our method gives users the ability to quantify the degree of similarity between the sets of shared operations to control the size of clusters. A case study involving twelve algorithms confirms that our approach can successfully cluster similar algorithms together based on the similarity of their component operations.