673 resultados para MtDNA
Resumo:
本文以山东近海野生和养殖牙鲆Paralichthys olivaceus(T.& S.)为研究对象,采用同工酶电泳和随机扩增多态性DNA(RAPD)两种方法,进行了群体遗传学研究;另外,用PCR扩增了牙鲆、桂皮斑鲆Pseudorhombus cinnamomeus(T.& S.)、石鲽Kareius bicoloratus,Basilewsky和大菱鲆Psetta maxima 4种鲽形目鱼类mtDNA 16s rRNA基因区的部分片段,采用生物信息、学方法构建了鲽形目分子系统树。主要结果如下:1.首先建立了适于牙鲆同工酶分析的水平淀粉凝胶和垂直聚丙烯酰胺凝胶电泳系统;对获得的牙鲆15种同工酶基本酶谱进行了生化遗传分析,进而对自然和养殖群体的生化遗传结构进行了分析,共记录了29个基因座位,发现了9个多态座位。2.野生群体的生化遗传参数多态基因座位比例(31.O%)、等位基因平均数(1.38)和群体平均杂合度(0.0802)都明显高于养殖群体(24.1%,1.28,O.0788);在野生群体中有9个多态基因座位,而养殖群体仅7个多态基因座位;其中,除了Cat和Idhp-1(仅养殖群体)(P < 0.05)有显著差异、Ldh-C(P < O.01)完全偏离Hardy-Weinberg定律外,其余多态座位基因频率均符合Hardy-Weinberg遗传平衡定律。野生和养殖群体的遗传相似性系数(I)为0.9877,它们的遗传距离(D)是0.0124;两群体间的遗传分化系数G_(st)为0.0681,D_m为0.01,表明总变异中的6.8%的遗传变异产生于群体间的基因差异。3.采用11个随机引物对20个野生个体和24个养殖个体进行了RAPD群体遗传多样性分析,分别扩增出88条和86条DNA带,片段大小在200-2500bp之间,平均每个引物扩增的带数是7.8-8.0。两个群体的多态座位比例分别是43.2%和34.9%,平均杂合度是0.2739和0.2255,而Shannon遗传多样性指数表明两群体的遗传变异中有88.12%的遗传变异来自种群内,只有11.88%的变异来自群体间。遗传分化指数G_(st)的结果也验证了Shannon遗传多样性指数的结果:总群体的遗传变异中约有12%是由两群体间的基因差异产生的。4.本文对牙鲆两个群体的同一批样品分别采用经典的同工酶方法和RAPD方法进行了较系统的比较分析。发现,RAPD所显示的多态性要比同工酶的高得多,因为大部分RAPD的变异是源于非编码区和重复DNA,可以遍布整个基因组,而同工酶仅是功能基因的产物,只表现编码区的变异。因此,自然选择在同工酶编码区的作用要多于RAPD标记。在遗传相似性系数(I)和遗传距离(D)上,RAPD的分析结果与同工酶的分析结果也是有差异的,用同工酶分析两个群体遗传距离只有0.0124,而用RAPD研究可达0.0508。遗传分化指数的差异也很大,同工酶为0.0681,RAPD为0.1237。5.RAPD和同工酶的分析结果是类似的,即自然群体的多态座位比例和平均杂合度要比养殖群体高,降低幅度在同工酶中界于1.7~22.3%之间,在RAPD中则界于15.9~19.2%之间。这充分证明了养殖群体的遗传多样性水平已有明显的丧失,值得我们注意。6.构建了鲽形目鱼类mtDNA 16S rRNA基因的分子系统树。通过分子克隆法将牙鲆、桂皮斑鲆、大菱鲆和石鲽mtDNA 16S rRNA目的基因片段连接到质粒载体上,经MegaBACE测序仪测序,分别获得了590、595、582和590bp序列,通过生物信息学方法对其进行了序列分析和核酸变异比较,结合NCBI上6种鲽形目鱼类的同源序列探讨了这4种鱼类在鲽形目中的遗传分化和分子系统进化,构建了系统树,其中,桂皮斑鲆的16S rRNA基因在系统树中的位置与物种形态资料的系统演化不相符,而其它三种很好地呈现了它们在鲽形目中的系统位置。同时,可以看出mtDNA 16S rRNA基因片段可以构建一个相对准确的树,特别是NJ树和ML树比较接近,更为客观一些。由比对序列获得的物种之间的遗传距离也基本可以反映种、属、科间的不同变异水平。
Resumo:
斑海豹,西北太平洋广泛分布的冷水性海洋哺乳动物,为我国的二类保护野生动物,属于濒危物种,也是唯一能在我国海域自然繁殖的鳍脚类动物。辽东湾结冰区是斑海豹在世界上8个繁殖区中最南端的一个。为了能够更好地保护斑海豹资源,对渤海海域斑海豹的栖息地、种群动态及分布时间、重金属体内积累、以及斑海豹的分子遗传特性进行了研究。结果如下: 斑海豹在渤海海域的栖息地有辽宁双台子河口水域、大连虎平岛和山东庙岛群岛海域三处,其中的上岸点分别为河口泥沙滩、海里的浅石滩和海岛周围的小岛礁三种类型。斑海豹出现在三个栖息地的时间为每年的3~5月,2002~2008年间各栖息地的斑海豹的数量变化不明显。 对斑海豹肌肉、肝和肾脏组织重金属元素含量的分析结果显示,汞(Hg)、镉(Cd)、铅(Pb)和砷(As)等有毒元素在斑海豹体内的积累远未达到致死浓度。 对斑海豹的部分mtDNA 序列分析发现,辽东湾斑海豹群体的遗传距离、控制区DNA的单元型多样度和核苷酸多样度均远小于日本群体,辽东湾群体的遗传多样性水平较低。 微卫星引物标记对辽东湾斑海豹群体的遗传多样性研究显示,平均有效等位基因数(2~4个)和期望杂合度(0.24~0.72)等指标均较低,表明辽东湾斑海豹群体遗传多样性水平下降,可能曾出现过一定程度的瓶颈效应。 对斑海豹的41个MHC-I基因的序列分析,得到40个等位基因。斑海豹MHC-I基因多态性水平高,说明辽东湾斑海豹种群MHC-I基因的丰富性。 以上研究结果对于我国辽东湾斑海豹种群的保护和管理具有一定意义。
Resumo:
为了进一步研究青蟹属系统进化的科学问题,并揭示我国东南沿海青蟹群体遗传结构和群体进化细节信息,本论文主要开展了以下两个方面的研究:(1)基于线粒体12S rRNA、16S rRNA和COI三种基因序列探讨中国东南沿海青蟹的种类归属与青蟹属的系统进化;(2)利用线粒体COI基因标记分析中国东南沿海拟穴青蟹的群体遗传结构。序列特征、遗传距离和系统进化分析结果都表明本文研究的青蟹均为S. paramamosain。NJ、BAYES和ML系统进化树显示S. paramamosain与S. tranquebarica互为姐妹种,S. olivecea应该是4种青蟹中最早分化出来的种类。10个地理群体130只拟穴青蟹的线粒体DNA(mitochondrial DNA,mtDNA)细胞色素氧化酶亚基I(COI)基因序列Mantel检验结果显示群体间的遗传分化程度与地理距离没有显著的相关性。分子进化中性检验结果表明自然选择在分子进化过程中起了重要作用,并暗示该物种在最近经历了一个快速的群体爆发及扩张事件。
Resumo:
概括了线粒体DNA(mtDNA)的特点与其作为遗传标记的优越性,着重回顾了该分子标记在分子生态学多个研究领域的应用,并阐述了其在青藏高原生物多样性、分子系地理学研究中的应用前景.
Resumo:
受高原抬升所致的水系变迁及人类活动的影响,分布于南门峡河流的裂腹鱼亚科鱼类与黄河干支流种群间的基因交流受到长期限制.作为孤立小群体,探讨其分类学地位及其在小生境中的进化机制对了解青藏高原鱼类多样性和物种的形成、进化具有重要意义.本文采用聚合酶链式反应(PCR)和直接测序方法获得了南门峡裂腹鱼亚科鱼类(n=29)及其近缘种(n=19)共48个个体的线粒体DNA(mtDNA)细胞色素b(cyt b)基因的全序列(1 140 bp),并以厚唇裸重鱼和尖裸鲤为外群构建了MP和Bayesian系统进化树.南门峡裂腹鱼亚科鱼类29个个体的序列经排序后,发现有100个(8.77%)多态性位点,共定义了16个单倍型,在系统进化树上分布于截然不同的两个族群中.其中5个单倍型(NMX3、6、7、13、15)与其近缘种花斑裸鲤和青海湖裸鲤形成单系群(MP 99%,Bayesian 98%),而其余11个单倍型(NMX1、2、4、5、8、9、10、11、12、14、16)与黄河干支流的黄河裸裂尻鱼形成另一个单系群(MP 99%,Bayesian 99%).序列差异分析显示,分布于不同族群的南门峡裂腹鱼亚科鱼类之间存在较大的碱基差异(平均为7.42%),显示出种间差异水平,表明分布于南门峡河流的裂腹鱼亚科鱼类可能是花斑裸鲤和黄河裸裂尻鱼形态相似种的复合体.结合青藏高原隆升所致的气候环境变化和高原北部水系变迁的事件,推断形态趋同进化可能导致了南门峡河流裂腹鱼亚科鱼类形态相似种的共存,而小生境自然选择压力是引发适应性形态趋同进化的主要原因.
Resumo:
构建了甘肃鼠兔、黄河鼠兔、藏鼠兔、高原鼠兔和红耳鼠兔的mtDNA限制性内切酶图谱,并以PAUP程序建立其分子系统树。结果表明,鼠兔亚属的4个物种与耗兔亚属的红耳鼠兔存在明显的长度变异(1kb),从而为两亚属的划分提供了新的遗传标记。同时,甘肃鼠兔和黄河鼠兔的遗传分化已达明显的物种级别,因而进一步证实它们均为独立种。在系统树中,黄河鼠兔与高原鼠兔亲缘关系最近,然后是藏鼠兔,最后是甘肃鼠兔与前3种构成一对姊妹群。依据遗传距离计算了分歧年代。两亚属的分歧时间约距今8.8×104ha,相当于中国哺乳动物时代的保德期中期;鼠兔亚属内4种的分歧发生于约距今(2.5~4.2)×104ha的上新世晚期,相当于榆社期晚期。
Resumo:
How coniferous trees in northern China changed their distribution ranges in response to Quaternary climatic oscillations remains largely unknown. Here we report a study of the phylogeography of Pinus tabulaeformis, an endemic and dominant species of coniferous forest in northern China. We examined sequence variation of maternally inherited, seed-dispersed mitochondrial DNA (mtDNA) (nad5 intron 1 and nad4/3-4) and paternally inherited, pollen- and seed-dispersed chloroplast DNA (cpDNA) (rpl16 and trnS-trnG) within and among 30 natural populations across the entire range of the species. Six mitotypes and five chlorotypes were recovered among 291 trees surveyed. Population divergence was high for mtDNA variation (G(ST) = 0.738, N-ST = 0.771) indicating low levels of seed-based gene flow and significant phylogeographical structure (N-ST > G(ST), P < 0.05). The spatial distribution of mitotypes suggests that five distinct population groups exist in the species: one in the west comprising seven populations, a second with a north-central distribution comprising 15 populations, a third with a southern and easterly distribution comprising five populations, a fourth comprising one central and one western population, and a fifth comprising a single population located in the north-central part of the species' range. Each group apart from the fourth group is characterized by a distinct mitotype, with other mitotypes, if present, occurring at low frequency. It is suggested, therefore, that most members of each group apart from Group 4 are derived from ancestors that occupied different isolated refugia in a previous period of range fragmentation of the species, possibly at the time of the Last Glacial Maximum. Possible locations for these refugia are suggested. A comparison of mitotype diversity between northern and southern subgroups within the north-central group of populations (Group 2) showed much greater uniformity in the northern part of the range both within and between populations. This could indicate a northward migration of the species from a southern refugium in this region during the postglacial period, although alternative explanations cannot be ruled out. Two chlorotypes were distributed across the geographical range of the species, resulting in lower levels of among-population chlorotype variation. The geographical pattern of variation for all five chlorotypes provided some indication of the species surviving past glaciations in more than one refugium, although differentiation was much less marked, presumably due to the greater dispersal of cpDNA via pollen.
Resumo:
The disjunct distribution of forests in the Qinghai-Tibetan Plateau (QTP) and adjacent Helan Shan and Daqing Shan highlands provides an excellent model to examine vegetation shifts, glacial refugia and gene flow of key species in this complex landscape region in response to past climatic oscillations and human disturbance. In this study, we examined maternally inherited mitochondrial DNA (nad1 intron b/c and nad5 intron 1) and paternally inherited chloroplast DNA (trnC-trnD) sequence variation within a dominant forest species, Picea crassifolia Kom. We recovered nine mitotypes and two chlorotypes in a survey of 442 individuals from 32 populations sampled throughout the species' range. Significant mitochondrial DNA population subdivision was detected (G(ST) = 0.512; N-ST = 0.679), suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (N-ST > GST, P < 0.05). Plateau haplotypes differed in sequence from those in the adjacent highlands, suggesting a long period of allopatric fragmentation between the species in the two regions and the presence of independent refugia in each region during Quaternary glaciations. On the QTP platform, all but one of the disjunct populations surveyed were fixed for the same mitotype, while most populations at the plateau edge contained more than one haplotype with the mitotype that was fixed in plateau platform populations always present at high frequency. This distribution pattern suggests that present-day disjunct populations on the QTP platform experienced a common recolonization history. The same phylogeographical pattern, however, was not detected for paternally inherited chloroplast DNA haplotypes. Two chlorotypes were distributed throughout the range of the species with little geographical population differentiation (G(ST) = N-ST = 0.093). This provides evidence for highly efficient pollen-mediated gene flow among isolated forest patches, both within and between the QTP and adjacent highland populations. A lack of isolation to pollen-mediated gene flow between forests on the QTP and adjacent highlands is surprising given that the Tengger Desert has been a geographical barrier between these two regions for approximately the last 1.8 million years.
Resumo:
1. Complete sequences of 1140 base pair of the cytochrome b gene from 133 specimens were obtained from nine localities including the inflow drainage system, isolated lakes and outflow drainage system in Qinghai-Tibetan Plateau to assess genetic diversity and to infer population histories of the freshwater fish Schizopygopsis pylzovi.2. Nucleotide diversities (pi) were moderate (0.0024-0.0045) in populations from the outflow drainage system and Tuosuo Lake, but low (0.0018-0.0021) in populations from Qiadam Basin. It is probable that the low intra-population variability is related with the paleoenvironmental fluctuation in Qiadam Basin, suggesting that the populations from Qiadam Basin have experienced severe bottleneck events in history.3. Phylogenetic tree topologies indicate that the individuals from different populations did not form reciprocal monophyly, but the populations from the adjacent drainages cluster geographically. Most population pairwise F-ST tests were significant, with non-significant pairwise tests between Tuosu Lake and Tuosuo Lake in the north-west of the Qinghai-Tibetan Plateau. Analysis of molecular variance (AMOVA) indicates that the significant genetic variation was explained at the levels of catchments within and among, not among specific boundaries or inflow and outflow drainage systems.4. The nested clade phylogeographical analysis indicates that historical processes are very important in the observed geographical structuring of S. pylzovi, and the contemporary population structure and differentiation of S. pylzovi may be consistent with the historical tectonic events occurred in the course of uplifts of the Qinghai-Tibetan Plateau. Fluctuations of the ecogeographical environment and major hydrographic formation might have promoted contiguous range expansion of freshwater fish populations, whereas the geological barriers among drainages have resulted in the fragmentation of population and restricted the gene flow among populations.5. The significantly large negative F-s-value (-24.91, P < 0.01) of Fu's F-s-test and the unimodal mismatch distribution indicate that the species S. pylzovi underwent a sudden population expansion after the historical tectonic event of the Gonghe Movement.6. The results of this study indicate that each population from the Qinghai-Tibetan Plateau should be managed and conserved separately and that efforts should be directed towards preserving the genetic integrity of each group.
Resumo:
The complete mitochondrial DNA (mtDNA) cytochrome b gene (1140 bp) was sequenced in Herzenstein macrocephalus and Gymnocypris namensis and in 13 other species and sub-species (n = 22), representing four closely related genera in the subfamily Schizothoracinae. Conflicting taxonomies of H. macrocephalus and G. namensis have been proposed because of the character instability among individuals. Parsimony, maximum likelihood and Bayesian methods produced phylogenetic trees with the same topology and resolved several distinctive clades. Previous taxonomic treatments, which variously placed these two species of separate genera or as sub-species, are inconsistent with the mtDNA phylogeny. Both H. macrocephalus and G. namensis appear in a well-supported clade, which also includes nine species of Schizopygopsis, and hence should be transferred to the genus Schizopygopsis. Morphological changes are further illustrated, and their adaptive evolution in response to the local habitat shifts during the speciation process appears to be responsible for conflicting views on the systematics of these two species and hence the contrasting taxonomic treatments. These species are endemic to the Qinghai-Tibetan Plateau, a region with a history of geological activity and a rich diversity of habitats that may have result in the parallel and reversal evolution of some morphological characters used in their taxonomies. Our results further suggest that speciation and morphological evolution of fishes in this region may be more complex than those previously expected. (c) 2007 The Authors Journal compilation (c) 2007 The Fisheries Society of the British Isles.
Resumo:
Background: The domestication of plants and animals was extremely important anthropologically. Previous studies have revealed a general tendency for populations of livestock species to include deeply divergent maternal lineages, indicating that they were domesticated in multiple, independent events from genetically discrete wild populations. However, in water buffalo, there are suggestions that a similar deep maternal bifurcation may have originated from a single population. These hypotheses have rarely been rigorously tested because of a lack of sufficient wild samples. To investigate the origin of the domestic yak (Poephagus grunnies), we analyzed 637 bp of maternal inherited mtDNA from 13 wild yaks (including eight wild yaks from a small population in west Qinghai) and 250 domesticated yaks from major herding regions.Results: The domestic yak populations had two deeply divergent phylogenetic groups with a divergence time of > 100,000 yrs BP. We here show that haplotypes clustering with two deeply divergent maternal lineages in domesticated yaks occur in a single, small, wild population. This finding suggests that all domestic yaks are derived from a single wild gene pool. However, there is no clear correlation of the mtDNA phylogenetic clades and the 10 morphological types of sampled yaks indicating that the latter diversified recently. Relatively high diversity was found in Qinghai and Tibet around the current wild distribution, in accordance with previous suggestions that the earliest domestications occurred in this region. Conventional molecular clock estimation led to an unrealistic early dating of the start of the domestication. However, Bayesian estimation of the coalescence time allowing a relaxation of the mutation rateConclusion: The information gathered here and the previous studies of other animals show that the demographic histories of domestication of livestock species were highly diverse despite the common general feature of deeply divergent maternal lineages. The results further suggest that domestication of local wild prey ungulate animals was a common occurrence during the development of human civilization following the postglacial colonization in different locations of the world, including the high, arid Qinghai-Tibetan Plateau.
Resumo:
The complete 1140 bp mitochondial cytochrome b sequences were obtained from 39 individuals representing five species of all four genera of highly specialized schizothoracine fishes distributed in the Qinghai-Tibet plateau. Sequence variation of the cytochrome b gene was surveyed among the 39 individuals as well as three primitive schizothoracines and one outgroup. Phylogenetic analysis suggested that the group assignment based on 1140 bp of the cytochrome b sequence is obviously; different from previous assignments, and the highly specialized schizothoracine fishes (Schizopygopsis pylzovi, Gymnocypris przewalskii, G. eckloni, Chuanchia lablosa, and Platypharodon extremus) form a monophyletic group that is sister to the clade formed by the primitive schizothoracine fishes (Schizothorax prenanti, S. pseudaksaiensis, and S. argentatus). The haplotypes of Schizopygopsis pylzovi and G. przewalskii were paraphyletic based on cytochrome b data, which most likely reflected incomplete sorting of mitochondrial DNA lineages. The diploid chromosome numbers of Schizofhoracinae were considered in phylogenetic analysis and provided a clear pattern of relationships. Molecular dating estimated for highly specialized schizothoracine fishes suggested that the highly specialized schizothoracine fishes diverged in the late Miocene Pliocene to Pleistocene (4.5x10(4)-4.05x10(6) Years BP). The relationship between the cladogenesis of highly specialized schizothoracine fishes and geographical events of the Qinghai-Tibet plateau is discussed.
Resumo:
Phylogenetic relationships of six species of Ochotona were investigated using mitochondrial DNA (mtDNA) restriction-site analysis. The phylogenetic tree constructed using PAUP was based on 62 phylogenetically informative sites with O. erythrotis designated as an outgroup. Two clades were evident. One contained O. curzoniae, O. huangensis, and O. thibetana. in the second, O. daurica was a sister taxon of O. cansus. The five species appear to come from different maternal lineages. The branching structure of the tree and sequence divergence confirm that huangensis and cansus are distinct species, and that mol-osa is a synonym of O. cansus rather than O. thibetana. Divergence time, estimated from genetic distances, indicates that the ancestors of the two maternal lineages diverged ca. 6.5 x 10(6) years ago. O. curzoniae diverged from O. huangensis, and O. daurica diverged from O. cansus, at about the same time (ca. 3.4 x 10(6) years ago). These data suggest a period of rapid radiation of the genus Ochotona in China, perhaps during the late Pliocene. These calculations correspond roughly to tectonic events and environmental changes in China throughout this period, and appear to be substantiated by the fossil record.
Resumo:
Restriction site mapping of mitochondrial DNA (mtDNA) with 16 restriction endonucleases was used to examine the phylogenetic relationships of Ochotona cansus, O. huangensis, O. thibetana, O. curzoniae and O. erythrotis. A 1-kb length variation between O. erythrotis of subgenus Pika and other four species of subgenus Ochotona was observed, which may be a useful genetic marker for identifying the two subgenera. The phylogenetic tree constructed using PAUP based on 61 phylogenetically informative sites suggests that O. erythrotis diverged first, followed by O. cansus, while O. curzoniae and O. huangensis are sister taxa related to O. thibetana, The results indicate that both O. cansus and O. huangensis should be treated as independent species. If the base substitution rate of pikas mtDNA was 2% per million years, then the divergence time of the two subgenera, Pika and Ochotana, is about 8.8 Ma ago of late Miocence, middle Bao-dian of Chinese mammalian age, and the divergence of the four species in subgenus Ochotona would have occurred about 2.5 - 4.2 Ma ago, Yushean of Chinese mammalian age. This calculation appears to be substantiated by the fossil record.
Resumo:
Wydział Biologii: Instytut Antropologii