954 resultados para Mouse as a laboratory animal - Theses
Resumo:
"September 1989."
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Loose-leaf; kept up by supplements.
Resumo:
U.S. Defense Documentation Center AD 627 212
Resumo:
Microfiche sheets have title: Clinical diagnosis of selected diseases exotic to most of the Americas.
Resumo:
Includes bibliographical references.
Resumo:
Prepared in cooperation with the American Association of Veterinary Laboratory Diagnosticians.
Resumo:
Includes bibliographical references.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The chromodomain is 40-50 amino acids in length and is conserved in a wide range of chromatic and regulatory proteins involved in chromatin remodeling. Chromodomain-containing proteins can be classified into families based on their broader characteristics, in particular the presence of other types of domains, and which correlate with different subclasses of the chromodomains themselves. Hidden Markov model (HMM)-generated profiles of different subclasses of chromodomains were used here to identify sequences encoding chromodomain-containing proteins in the mouse transcriptome and genome. A total of 36 different loci encoding proteins containing chromodomains, including 17 novel loci, were identified. Six of these loci (including three apparent pseudogenes, a novel HP1 ortholog, and two novel Msl-3 transcription factor-like proteins) are not present in the human genome, whereas the human genome contains four loci (two CDY orthologs and two apparent CDY pseuclogenes) that are not present in mouse. A number of these loci exhibit alternative splicing to produce different isoforms, including 43 novel variants, some of which lack the chromodomain. The likely functions of these proteins are discussed in relation to the known functions of other chromodomain-containing proteins within the same family.
Resumo:
The role of growth hormone (GH) in embryonic growth is controversial, yet preimplantation embryos express GH, insulin-like growth factor I (IGF-I) and their receptors. In this study, addition of bovine GH doubled the proportion of two-cell embryos forming blastocysts and increased by about 25% the number of cells in those blastocysts with a concentration-response curve showing maximal activity at 1 pg bovine GH ml(-1), with decreasing activity at higher and lower concentrations. GH increased the number of cells in the trophectoderm by 25%, but did not affect the inner cell mass of blastocysts. Inhibition of cell proliferation by anti-GH antiserum indicated that GH is a potent autocrine or paracrine regulator of the number of trophectoderm cells in vivo. Type 1 IGF receptors (IGF1R) were localized to cytoplasmic vesicles and plasma membrane in the apical domains of uncompacted and compacted eight-cell embryos, but were predominantly apparent in cytoplasmic vesicles of the trophectoderm cells of the blastocyst, similar to GH receptors. Studies using alphaIR3 antiserum which blocks ligand activation of IGF1R, showed that IGF1R participate in the autocrine or paracrine regulation of the number of cells in the inner cell mass by an endogenous IGF-I-IGF1R pathway. However, alphaIR3 did not affect GH stimulation of the number of trophectoderm cells. Therefore, CH does not use secondary actions via embryonic IGF-I to modify the number of blastocyst cells. This result indicates that GH and IGF-I act independently. GH may selectively regulate the number of trophectoderm cells and thus implantation and placental growth. Embryonic GH may act in concert with IGF-I, which stimulates proliferation in the inner cell mass, to optimize blastocyst development.