983 resultados para Motion Planning
Resumo:
This study examines the participation of a group of high school students in designing a Heritage Journey as part of an urban redevelopment project in their community. School-community engagement offers young people an opportunity to engage in community life and influence decisions that affect them. Forging links between community and school is becoming more important for teachers as they attempt to create new authentic learning opportunities for young people within a changing world. Increasingly, researchers and urban planners are including children and young people as active decision makers and participants in community engagement projects. However, models of participation tend to be adult-focussed, conceive participation in terms of low to high graduated levels and lack a clearly articulated theoretical basis. The research problem in this study focuses on investigating whether the inclusion of young people in school-community engagement results in value adding to urban planning and is an example of genuine participation. The aim of the study is to provide a theoretically informed, empirically rich understanding of the inclusion of young people in a community engagement strategy for an urban planning project. Theories of space developed by Henri Lefebvre and Edward Soja are drawn upon for understanding how space is understood, used, and redeveloped by the students and other stakeholders. The study also draws on David Harvey’s notion of utopia and space to consider the imaginative possibilities of the students’ designs and ideas. The study uses a participatory research approach and documents the opportunities and challenges of this methodology. The thesis argues that school-community engagement within a "Thirdspace" offers many new opportunities for the emergence of authentic learning situations. Key findings from the study show young people’s participation in an urban planning project can achieve successful results when young people are given opportunities for full participation in decision-making processes; multiple pathways for active engagement are incorporated into the research design; opportunities for mentoring are provided; realistic timelines are communicated to all stakeholders and the needs and social practices of the local community are acknowledged. A new spatial model of community engagement is proposed as an outcome of the study. Unlike previous models of participation, this model demonstrates how exclusion and inclusion can be conceived visually, and may prove effective for conceptualising future community engagement projects that involve young people.
Resumo:
Previous research suggested that due to the uncertainties surrounding the venture creation process, planning activities may be more valuable for already operating firms than for emerging ventures (McGrath and MacMillan, 1995). Business planning may serve different purposes during the early stages of the venture development process. Early planning during the nascent stage may be used to marshal the resources toward the achievement of preliminary goals (Locke and Latham, 2000), to gain external legitimization and funding (Karlssson & Honig, 2009; Stinchcombe, 1965). Planning may reduce the risk of future failure by facilitating the decision making process of launching -or not- the venture (Chwolka & Raith, 2011) by analysing the opportunity and its market potential (Boyd, 1991; Delmar & Shane, 2003). In later stages, planning may have a more internal role and may act as a strategic implementation tool (Brews & Hunt, 1999). However, if the reasons why ventures should engage (Frese, 2009) –or not- (Honig, 2004) in business planning have been investigated quite extensively (Brinckmann et al., 2010), how business plans are actually used over time by new ventures at different stages of their development and how these uses impact the performance of the firms are still unclear.
Resumo:
4D simulation, building information modeling, virtual construction, computer simulation and virtual prototyping are emerging topics in the building construction industry. These techniques not only relate to the buildings themselves, but can also be applied to other forms of construction, including bridges. Since bridge construction is a complex process involving multiple types of plant and equipment, applying such virtual methods benefits the understanding of all parties in construction practice. This paper describes the relationship between temporary platforms, plant and equipment resources and a proposed-built model in the construction planning and use of Virtual Prototyping Simulation (VPS) to implement different construction scenarios in order to help planners identify an optimal construction plan. A case study demonstrates the use of VPS integrated with temporary platform design and plant and equipment-resource allocation to generate different construction scenarios.
Resumo:
Non-profit organisations by their very nature are staffed by a variety of different people with a range of backgrounds, experiences and reasons for participation. These differences can lead to “distancing” of certain groups and with little time or money for boundary spanning the organisation can find itself in a fractured state that hampers not just its goal realisation, but its goal determination. Strategic planning is often seen as an expensive, time consuming process that many smaller non-profit organisations can little afford to indulge in. In addition, the ruling elite, whether historical or professional may view the process as unnecessary or threatening. However, strategic planning can offer processes and potential outcomes that non profit organisations can not afford to ignore. This paper provides an analysis through one case study involving a non-profit, health related organisation that moved through a process of strategic planning that ultimately encouraged development and group cohesion through goal identification and determination as well as strategy formulation. The results indicate the importance of valuing the strategic planning process itself rather than the form it takes. Challenging the rulership of the historical or professional elite can be difficult in a non-profit organisation, but diversity of involvement rather than uniformity proved to be a successful strategy. Organisational cohesion through consensus building was the ultimate outcome.
Resumo:
This thesis presents a new approach to compute and optimize feasible three dimensional (3D) flight trajectories using aspects of Human Decision Making (HDM) strategies, for fixed wing Unmanned Aircraft (UA) operating in low altitude environments in the presence of real time planning deadlines. The underlying trajectory generation strategy involves the application of Manoeuvre Automaton (MA) theory to create sets of candidate flight manoeuvres which implicitly incorporate platform dynamic constraints. Feasible trajectories are formed through the concatenation of predefined flight manoeuvres in an optimized manner. During typical UAS operations, multiple objectives may exist, therefore the use of multi-objective optimization can potentially allow for convergence to a solution which better reflects overall mission requirements and HDM preferences. A GUI interface was developed to allow for knowledge capture from a human expert during simulated mission scenarios. The expert decision data captured is converted into value functions and corresponding criteria weightings using UTilite Additive (UTA) theory. The inclusion of preferences elicited from HDM decision data within an Automated Decision System (ADS) allows for the generation of trajectories which more closely represent the candidate HDM’s decision strategies. A novel Computationally Adaptive Trajectory Decision optimization System (CATDS) has been developed and implemented in simulation to dynamically manage, calculate and schedule system execution parameters to ensure that the trajectory solution search can generate a feasible solution, if one exists, within a given length of time. The inclusion of the CATDS potentially increases overall mission efficiency and may allow for the implementation of the system on different UAS platforms with varying onboard computational capabilities. These approaches have been demonstrated in simulation using a fixed wing UAS operating in low altitude environments with obstacles present.
Resumo:
Parents are at risk for inactivity; however, research into understanding parental physical activity (PA) is scarce. We integrated self-determined motivation, planning, and the theory of planned behavior (TPB) to better understand parental PA. Parents (252 mothers, 206 fathers) completed a main questionnaire assessing measures underpinning these constructs and a 1-week follow-up of PA behavior to examine whether self-determined motivation indirectly influenced intention via the TPB variables (i.e., attitude, subjective norm, and perceived behavioral control) and intention indirectly influenced behavior via planning. We found self-determined motivation on intention was fully mediated by the TPB variables and intention on behavior was partially mediated by the planning variables. In addition, slight differences in the model’s paths between the sexes were revealed. The results illustrate the range of important determinants of parental PA and provide support for the integrated model in explaining PA decision making as well as the importance of examining sex differences.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation (ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
Virtual world platforms such as Second Life have been successfully used in educational contexts to motivate and engage learners. This article reports on an exploratory workshop involving a group of high school students using Second Life for an urban planning project. Young people are traditionally an under-represented demographic when it comes to participating in urban planning and decision making processes. The research team developed activities that combined technology with a constructivist approach to learning. Real world experiences and purposes ensured that the workshop enabled students to see the relevance of their learning. Our design also ensured that play remained an important part of the learning. By conceiving of the workshop as a ‘serious playground’ we investigated the ludic potential of learning in a virtual world.
Resumo:
A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle and at the same time to minimize a prescribed criterion such as time, energy, payload or combination of those. Indeed, the major issue is that due to the vehicles' design and the actuation modes usually under consideration for underwater platforms the number of actuator switchings must be kept to a small value to ensure feasibility and precision. This constraint is typically not verified by optimal trajectories which might not even be piecewise constants. Our goal is to provide a feasible trajectory that minimizes the number of switchings while maintaining some qualities of the desired trajectory, such as optimality with respect to a given criterion. The one-sided Lipschitz constant is used to derive theoretical estimates. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six degrees-of-freedom and one is minimally actuated with control motions constrained to the vertical plane.
Resumo:
Exploiting wind-energy is one possible way to extend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.