917 resultados para Morphine Withdrawal
Resumo:
P>Cholinergic agonists and acetylcholinesterase inhibitors, such as neostigmine, produce a muscarinic receptor-mediated antinociception in several animal species that depends on activation of spinal cholinergic neurons. However, neostigmine causes antinociception in sheep only in the early, and not late, postoperative period. In the present study, a model of postoperative pain was used to determine the antinociceptive effects of bethanechol (a muscarinic agonist) and neostigmine administered intrathecally 2, 24 or 48 h after a plantar incision in a rat hind paw. Changes in the threshold to punctate mechanical stimuli were evaluated using an automated electronic von Frey apparatus. Mechanical hyperalgesia was obtained following plantar incision, the effect being stronger during the immediate (2 h) than the late post-surgical period. Bethanechol (15-90 mu g/5 mu L) or neostigmine (1-3 mu g/5 mu L) reduced incision-induced mechanical hyperalgesia, the effects of both drugs being more intense during the immediate (2 h) than the late post-surgical period. The ED(50) for bethanechol injected at 2, 24 and 48 h was 5.6, 51.9 and 82.5 mu g/5 mu L, respectively. The corresponding ED(50) for neostigmine was 1.62, 3.02 and 3.8 mu g/5 mu L, respectively. The decline in the antinociceptive potency of neostigmine with postoperative time is interpreted as resulting from a reduction in pain-induced activation of acetylcholine-releasing descending pathways. However, the similar behaviour of bethanechol in the same model points to an additional mechanism involving intrinsic changes in spinal muscarinic receptors.
Resumo:
Noxious stimulation of the leg increases hind limb blood flow (HBF) to the ipsilateral side and decreases to the contralateral in rat. Whether or not this asymmetrical response is due to direct control by sympathetic terminals or mediated by other factors such as local metabolism and hormones remains unclear. The aim of this study was to compare responses in lumbar sympathetic nerve activity, evoked by stimulation of the ipsilateral and contralateral sciatic nerve (SN). We also sought to determine the supraspinal mechanisms involved in the observed responses. In anesthetized and paralyzed rats, intermittent electrical stimulation (1 mA, 0.5 Hz) of the contralateral SN evoked a biphasic sympathoexcitation. Following ipsilateral SN stimulation, the response is preceded by an inhibitory potential with a latency of 50 ms (N=26). Both excitatory and inhibitory potentials are abolished following cervical Cl spinal transection (N=6) or bilateral microinjections of muscimol (N=6) in the rostral ventrolateral medulla (RVLM). This evidence is suggestive that both sympathetic potentials are supraspinally mediated in this nucleus. Blockade of RVLM glutamate receptors by microinjection of kynurenic acid (N=4) selectively abolished the excitatory potential elicited by ipsilateral SN stimulation. This study supports the physiological model that activation of hind limb nociceptors evokes a generalized sympathoexcitation, with the exception of the ipsilateral side where there is a withdrawal of sympathetic tone resulting in an increase in HBF. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
Illicit opiate use, especially injected drugs, contributes to premature mortality and morbidity in many developed and developing societies. The economic costs of illicit drug use are substantial. Fatal overdoses and HIV/AIDS resulting from sharing dirty needles and injecting equipment are major contributors to mortality and morbidity. Illicit opioid use accounted for 0.7 percent of global disability–adjusted life years in 2000. An estimated 15.3 million people, or 0.4 percent of the world population ages 15 to 64, used illicit opioids in 2002, with more than half using heroin and the rest using opium or diverted pharmaceuticals such as buprenorphine, methadone, or morphine. The most popular interventions for illicit opioid dependence in many developed societies have been law enforcement efforts to interdict the drug supply and enforce legal sanctions against drug use. One consequence has been that illicit opioid users have been exposed to the least effective intervention: imprisonment for drug or property offenses. The most effective intervention to reduce blood–borne virus infection resulting from illicit drug injections is provision of clean injecting equipment to users. This intervention has been widely supported in developed countries, but less so in developing countries. In addition, vaccinations are effective against hepatitis B. In treatment settings, the most popular interventions have been detoxification and drug–free treatment, which has proven the least productive in retaining opioid–dependent people in treatment. Opioid agonists have a niche role in treatment of opioid dependence, especially if their efficacy improves with development of long–acting injectable forms of the drug.
Resumo:
Objective To evaluate the extent sensory and motor blocks produced by the epidural injection of different volumes of 0.25% bupivacaine (Bu) with methylene blue (MB), in dogs. Study design Prospective experimental trial. Animals Twenty healthy adult mongrel dogs, weighing 9.9 +/- 1.9 kg. Methods Dogs were randomly allocated into one of four groups that received 0.2, 0.4, 0.6 or 0.8 mL kg-1 of an epidural solution containing 0.25% Bu and MB. Sensory block was evaluated against time by pinching the tail, hind limb interdigital web, toenail bases and the skin over the vertebral dermatomes. Motor block was assessed by ataxia, hind limb weight-bearing ability and by loss of muscle tone of the tail and pelvic limbs. Data were collected at 2, 5, 10, 15 and 30 minutes after the end of epidural injection. After the final time point, dogs were euthanatized and laminectomies were conducted to expose the extent of the dural dye staining. Results The volumes 0.2, 0.4, 0.6 and 0.8 mL kg-1 of 0.25% Bu and MB blocked a mean of 5, 14.2, 20.2 and 21 dermatomes, respectively. The extent of the senory block increased up to a volume of 0.6 mL kg-1. Motor block was longer-lasting and more intense than sensory block. Complete dyeing of the spinal cord with MB was achieved in some dogs at 0.4 mL kg-1 and all dogs at 0.6 mL kg-1. Conclusions The volume of anesthetic injected into the epidural space plays an important role in the quality of the epidural anesthesia. At 0.25%, bupivacaine provided an efficient sensory block at 0.6 mL kg-1. Clinical relevance Relatively high volumes (0.6 mL kg-1) of 0.25%, BU and MB were needed to produce an effective sensory and motor block caudal to the umbilicus, but all spinal cord segments were reached by MB at this dose.
Resumo:
Objective To evaluate the post-operative analgesic effect of metamizol (dipyrone) administered intravenously at three different doses (15 mg kg(-1), 25 mg kg(-1) and 35 mg kg(-1)) compared to placebo in dogs undergoing ovariohysterectomy. Study design Prospective, comparative, randomized. blinded trial. Animals Forty healthy bitches, aged 1-6 years, weighing 10-35 kg Methods The animals were randomly divided into four groups and received their respective treatments immediately after surgery: placebo group (0.9% saline solution), D15 group (metamizol 15 mg kg(-1) IV), D25 group (metamizol 25 mg kg(-1) IV), D35 group (metamizol 35 mg kg(-1) IV). The following variables were measured: sedation, pulse rate (PR). respiratory rate (f(R)). arterial blood pressure (ABP), plasma catecholamines. serum cortisol, blood urea nitrogen (BUN) and creatinine metabolites. albumin, alanine aminotransferase (ALT), alkaline phosphatase (ALP). hemogram. platelet counts and level of analgesia which was assessed by visual analog (VAS). descriptive and behavioral scales. Patients were monitored for 48 hours after the administration of the analgesic agent. Rescue analgesia (tramadol, 2 mg kg(-1), intramuscularly) was provided for animals with pain scores >= 4, as determined by the VAS or descriptive scale. Results The D25 and D35 groups showed equivalent post-operative analgesia, as shown by decreased pain scores, according to the three different pain scales, and fewer animals that required rescue analgesia. Significantly lower serum cortisol concentrations were observed in the D25 and D35 groups when compared to the placebo and D15 groups. No hematologic, renal, hepatic or clinical adverse effects were observed during the treatment. Conclusions and clinical relevance Metamizol administered intravenously at 25 or 35 mg kg(-1) can provide adequate post-operative analgesia in bitches undergoing ovariohysterectomy.
Resumo:
Objective-To compare analgesic effects of tramadol, codeine, and ketoprofen administered alone and in combination and their effects on concentrations of blood glucose, serum cortisol, and serum interleukin (IL)-6 in dogs undergoing maxillectomy or mandibulectomy. Animals-42 dogs with oral neoplasms. Procedures-30 minutes before the end of surgery, dogs received SC injections of tramadol (2 mg/kg), codeine (2 mg/kg), ketoprofen (2 mg/kg), tramadol + ketoprofen, or codeine + ketoprofen (at the aforementioned dosages). Physiologic variables, analgesia, and sedation were measured before (baseline) and 1, 2, 3, 4, 5, and 24 hours after surgery. Blood glucose, serum cortisol, and serum IL-6 concentrations were measured 1, 3, 5, and 24 hours after administration of analgesics. Results-All treatments provided adequate postoperative analgesia. Significant increases in mean +/- SD blood glucose concentrations were detected in dogs receiving tramadol (96 +/- 14 mg/dL), codeine (120 +/- 66 mg/dL and 96 +/- 21 mg/dL), ketoprofen (105 +/- 22 mg/dL), and codeine + ketoprofen (104 +/- 16 mg/dL) at 5, 1 and 3, 5, and 3 hours after analgesic administration, respectively, compared with preoperative (baseline) values. There were no significant changes in physiologic variables, serum IL-6 concentrations, or serum cortisol concentrations. Dogs administered codeine + ketoprofen had light but significant sedation at 4, 5, and 24 hours. Conclusions and Clinical Relevance-Opioids alone or in combination with an NSAID promoted analgesia without adverse effects during the 24-hour postoperative period in dogs undergoing maxillectomy or mandibulectomy for removal of oral neoplasms. (Am J Vet Res 2010;71:1019-1026)
Resumo:
Objective-To evaluate the effects of increasing doses of remifentanil hydrochloride administered via constant rate infusion (CRI) on the minimum alveolar concentration (MAC) of isoflurane in cats. Animals-6 healthy adult cats. Procedures-For each cat, 2 experiments were performed (2-week interval). On each study day, anesthesia was induced and maintained with isoflurane; a catheter was placed in a cephalic vein for the administration of lactated Ringer`s solution or remifentanil CRIs, and a catheter was placed in the jugular vein for collection of blood samples for blood gas analyses. On the first study day, individual basal MAC (MAC(Basal)) was determined for each cat. On the second study day, 3 remifentanil CRIs (0.25, 0.5, and 1.0 mu g/kg/min) were administered (in ascending order); for each infusion, at least 30 minutes elapsed before determination of MAC (designated as MAC(R0.25`) MAC(R0.5`) and MACR(R1.0`) respectively). A 15-minute washout period was allowed between CRIs. A control MAC (MAC Control) was determined after the last remifentanil infusion. Results-Mean +/- SD MAC(Basal) and MAC(Control) values at sea level did not differ significantly (1.66 +/- 0.08% and 1.52 +/- 0.21%, respectively). The MAC values determined for each remifentanil CRI did not differ significantly. However, MACR(0.25`) MAC(R0.5`) and MAC(R1.0) were significantly decreased, compared with MAC(Basal`) by 23.4 +/- 79%, 29.8 +/- 8.3%, and 26.0 +/- 9.4%, respectively. Conclusions and Clinical Relevance-The 3 doses of remifentanil administered via CRI resulted in a similar degree of isoflurane MAC reduction in adult cats, indicating that a ceiling effect was achieved following administration of the lowest dose. (Am J Vet Res 2009;70:581-588)
Resumo:
The aim of the present study was to investigate the role of the spinal cord heme oxygenase (HO)-carbon monoxide (CO)-soluble guanylate cyclase (sGC)-cGMP pathway in nociceptive response of rats to the formalin experimental nociceptive model. Animals were handled and adapted to the experimental environment for a few days before the formalin test was applied. For the formalin test 50 mu l of a 1% formalin solution was injected subcutaneously in the dorsal surface of the right hind paw. Following injections, animals were observed for I h and flinching behavior was measured as the nociceptive response. Thirty min before the test, rats were pretreated with intrathecal injections with the HO inhibitor, zinc deuteroporphyrin 2,4-bis glycol (ZnDPBG) or heme-lysinate, which is known to induce the HO pathway. Control animals were treated with vehicles. We observed a significant increase in nociceptive response of rats treated with ZnDPBG, and a drastic reduction of flinching nociceptive behavioral response in the heme-lysinate treated animals. Furthermore, the HO pathway seems to act via cGMP, since methylene blue (a sGC inhibitor) prevented the reduction of flinching nociceptive behavioral response caused by heme-lysinate. These findings strongly indicate that the HO pathway plays a spinal antinociceptive role during the formalin test, acting via cGMP. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The mechanisms whereby tissue sensitivity to PRL is controlled are not well understood. Here we report that expression of mRNA and protein for members of the SOCS/CIS/JAB family of cytokine signaling inhibitors is increased by PRL administration in ovary and adrenal gland of the lactating rat deprived of circulating PRL and pups for 24 h but not in mammary gland. Moreover, suckling increases SOCS mRNA in the ovary but not in the mammary gland of pup-deprived rats. Deprivation of PRL and pups for 48 h allows the mammary gland to induce SOCS genes in response to PRL administration, and this is associated with a decrease in basal SOCS-3 mRNA and protein expression to the level seen in other tissues, suggesting that SOCS-3 induced refractoriness related to filling of the gland. In reporter assays, SOCS-1, SOCS-3, and CIS, but not SOCS-2, are able to inhibit transactivation of the STAT 5-responsive beta -lactoglobulin promoter in transient transfection assays. Moreover, suckling results in loss of ovarian and adrenal responsiveness to PRL administered 2 h after commencement of suckling, as determined by STAT 5 gel shift assay. Immunohistochemistry was used to localize the cellular sites of SOCS-3 and CIS protein expression in the ovary and adrenal gland. We propose that induced SOCS-1, SOCS-3, and CIS are actively involved in the cellular inhibitory feedback response to physiological PRL surges in the corpus luteum and adrenal cortex during lactation, but after pup withdrawal, the mammary gland is rendered unresponsive to PRL by increased levels of SOCS-3.
Resumo:
GH is being used by elite athletes to enhance sporting performance. To examine the hypothesis that exogenous 22-kDa recombinant human GH (rhGH) administration could be detected through suppression of non-22-kDa isoforms of GH, we studied seventeen aerobically trained males (age, 26.9 +/- 1.5 yr) randomized to rhGH or placebo treatment (0.15 IU/kg/day for 1 week). Subjects were studied at rest and in response to exercise (cycle-ergometry at 65% of maximal work capacity for 20 min). Serum was assayed for total GH (Pharmacia IRMA and pituitary GH), 22-kDa GH (2 different 2-site monoclonal immunoassays), non-22-kDa GH (22-kDa GH-exclusion assay), 20-kDa GH, and immunofunctional GH. In the study, 3 h after the last dose of rhGH, total and 22-kDa GH concentrations were elevated, reflecting exogenous 22-kDa GH. Non-22-kDa and 20-kDa GH levels were suppressed. Regression of non-22-kDa or 20-kDa GH against total or 22-kDa GH produced clear separation of treatment groups. In identical exercise studies repeated between 24 and 96 h after cessation of treatment, the magnitude of the responses of all GH isoforms was suppressed (P < 0.01), but the relative proportions were similar to those before treatment. We conclude: 1) supraphysiological doses of rhGH in trained adult males suppressed exercise-stimulated endogenous circulating isoforms of GH for up to 4 days; 2) the dearest separation of treatment groups required the simultaneous presence of high exogenous 22-kDa GH and suppressed 20-kDa or non-22-kDa GH concentrations; and 3) these methods may prove useful in detecting rhGH abuse in athletes.
Resumo:
This article represents the proceedings of a symposium at the 2000 ISBRA Meeting in Yokohama, Japan. The chairs were Izuru Matusmoto and Peter A. Wilce. The presentations were (1) GABA receptor subunit expression in the human alcoholic brain, by Tracey Buckley and Peter Dodd; (2) NMDAR gene expression during ethanol addiction, by Jorg Puzke, Rainer Spanagel, Walther Zieglgansberger, and Gerald Wolf; (3) Differentially expressed gene in the nucleus accumbens from ethanol-administered rat, by Shuangying Leng; (4) Expression of a novel gene in the alcoholic brain, by Peter A. Wilce; and (5) Investigations of haplotypes of the dopamine Da-receptor gene in alcoholics, by Hans Rommelspacher, Ulrich Finckh, and Lutz G. Schmidt.
Resumo:
Skeletal muscle differentiation and the activation of muscle-specific gene expression are dependent on the concerted action of the MyoD family and the MADS protein, MEF2, which function in a cooperative manner. The steroid receptor coactivator SRC-2/GRIP-1/TIF-2, is necessary for skeletal muscle differentiation, and functions as a cofactor for the transcription factor, MEF2. SRC-P belongs to the SRC family of transcriptional coactivators/cofactors that also includes SRC-1 and SRC-3/RAC-3/ACTR/ AIB-1. In this study we demonstrate that SRC-P is essentially localized in the nucleus of proliferating myoblasts; however, weak (but notable) expression is observed in the cytoplasm. Differentiation induces a predominant localization of SRC-P to the nucleus; furthermore, the nuclear staining is progressively more localized to dot-like structures or nuclear bodies. MEF2 is primarily expressed in the nucleus, although we observed a mosaic or variegated expression pattern in myoblasts; however, in myotubes all nuclei express MEF2. GRIP-1 and MEF2 are coexpressed in the nucleus during skeletal muscle differentiation, consistent with the direct interaction of these proteins. Rhabdomyosarcoma (RMS) cells derived from malignant skeletal muscle tumors have been proposed to be deficient in cofactors. Alveolar RMS cells very weakly express the steroid receptor coactivator, SRC-P, in a diffuse nucleocytoplasmic staining pattern. MEF2 and the cofactors, SRC-1 and SRC-3 are abundantly expressed in alveolar and embryonal RMS cells; however, the staining is not localized to the nucleus. Furthermore, the subcellular localization and transcriptional activity of MEF2C and a MEF2-dependent reporter are compromised in alveolar RMS cells. In contrast, embryonal RMS cells express SRC-2 in the nucleus, and MEF2 shuttles from the cytoplasm to the nucleus after serum withdrawal. In conclusion, this study suggests that the steroid receptor coactivator SRC-P and MEF2 are localized to the nucleus during the differentiation process. In contrast, RMS cells display aberrant transcription factor SRC localization and expression, which may underlie certain features of the RMS phenotype.
Resumo:
The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.
Resumo:
Adaptive changes that occur after chronic exposure to ethanol are an important component in the development of physical dependence. We have focused our research on ethanol-induced changes in the expression of several genes that may be important in adaptation. In this article, we describe adaptive changes at the level of the N-methyl-D-aspartate receptor, in the protein expression and activity of the Egr transcription factors, and in the expression of a novel gene of unknown function. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Previously, we reported the presence of dual promoters, referred to as distal (DP) and proximal, with a negative regulatory element between them in the mouse mu -opioid receptor (mor) gene. Here we have identified a positive regulatory element influencing mor DP transcription, which contains multiple consensus binding motifs for Sox factors (sex-determining Sry-like high mobility group box-containing genes). In gel supershift assays, the Sox family member Sox18 bound directly to the multiple Sox consensus binding motifs of the mor DP enhancer. Overexpression of Sox18 cDNA increased luciferase activity regulated by the mor DP, and did so in a Sox18 concentration-dependent manner. In contrast, overexpression of another Sox member, Sox5, triggered no such trans-activation of mor DP-driven luciferase activity or DNA-protein binding activity. These results suggest that Sox18 directly and specifically stimulates mor gene expression, by trans-activating the mor DP enhancer.