920 resultados para Monitoring of Structures
Resumo:
We present a fluorescence-lifetime based method for monitoring cell and tissue activity in situ, during cell culturing and in the presence of a strong autofluorescence background. The miniature fiber-optic probes are easily incorporated in the tight space of a cell culture chamber or in an endoscope. As a first application we monitored the cytosolic calcium levels in porcine tracheal explant cultures using the Calcium Green-5N (CG5N) indicator. Despite the simplicity of the optical setup we are able to detect changes of calcium concentration as small as 2.5 nM, with a monitoring time resolution of less than 1 s.
Devices in heart failure: potential methods for device-based monitoring of congestive heart failure.
Resumo:
Congestive heart failure has long been one of the most serious medical conditions in the United States; in fact, in the United States alone, heart failure accounts for 6.5 million days of hospitalization each year. One important goal of heart-failure therapy is to inhibit the progression of congestive heart failure through pharmacologic and device-based therapies. Therefore, there have been efforts to develop device-based therapies aimed at improving cardiac reserve and optimizing pump function to meet metabolic requirements. The course of congestive heart failure is often worsened by other conditions, including new-onset arrhythmias, ischemia and infarction, valvulopathy, decompensation, end-organ damage, and therapeutic refractoriness, that have an impact on outcomes. The onset of such conditions is sometimes heralded by subtle pathophysiologic changes, and the timely identification of these changes may promote the use of preventive measures. Consequently, device-based methods could in the future have an important role in the timely identification of the subtle pathophysiologic changes associated with congestive heart failure.
Resumo:
We tested a set of surface common mid-point (CMP) ground penetrating radar (GPR) surveys combined with elevation rods ( to monitor surface deformation) and gas flux measurements to investigate in-situ biogenic gas dynamics and ebullition events in a northern peatland ( raised bog). The main findings are: ( 1) changes in the two-way travel time from the surface to prominent reflectors allow estimation of average gas contents and evolution of free-phase gas (FPG); ( 2) peat surface deformation and gas flux measurements are strongly consistent with GPR estimated changes in FPG content over time; ( 3) rapid decreases in atmospheric pressure are associated with increased gas flux; and ( 4) single ebullition events can induce releases of methane much larger ( up to 192 g/m(2)) than fluxes reported by others. These results indicate that GPR is a useful tool for assessing the spatial distribution, temporal variation, and volume of biogenic gas deposits in peatlands.
Resumo:
A set of high resolution surface ground penetrating radar (GPR) surveys, combined with elevation rod ( to monitor surface deformation) and gas flux measurements, were used to investigate in situ biogenic gas dynamics within a northern peatland (Caribou Bog, Maine). Gas production rates were directly estimated from the time series of GPR measurements. Spatial variability in gas production was also investigated by comparing two sites with different geological and ecological attributes, showing differences and/or similarities depending on season. One site characterized by thick highly humified peat deposits (5-6 m), wooded heath vegetation and open pools showed large ebullition events during the summer season, with estimated emissions (based on an assumed range of CH(4) concentration) between 100 and 172 g CH(4) m(-2) during a single event. The other site characterized by thinner less humified peat deposits (2-3 m) and shrub vegetation showed much smaller ebullition events during the same season (between 13 and 23 g CH(4) m(-2)). A consistent period of free-phase gas (FPG) accumulation during the fall and winter, enhanced by the frozen surficial peat acting as a confining layer, was followed by a decrease in FPG after the snow/ice melt that released estimated fluxes between 100 and 200 g CH(4) m(-2) from both sites. Estimated FPG production rates during periods of biogenic gas accumulation ranged between 0.22 and 2.00 g CH(4) m(3) d(-1) and reflected strong seasonal and spatial variability associated with differences in temperature, peat soil properties, and/or depositional attributes (e. g., stratigraphy). Periods of decreased atmospheric pressure coincided with short-period increases in biogenic gas flux, including a very rapid decrease in FPG content associated with an ebullition event that released an estimated 39 and 67 g CH(4) m(-2) in less than 3.5 hours. These results provide insights into the spatial and seasonal variability in production and emission of biogenic gases from northern peatlands.
Resumo:
The increasing role for structured and personalized self-monitoring of blood glucose (SMBG) in management of type 2 diabetes has been underlined by randomized and prospective clinical trials. These include Structured Testing Program (or STeP), St. Carlos, Role of Self-Monitoring of Blood Glucose and Intensive Education in Patients with Type 2 Diabetes Not Receiving Insulin, and Retrolective Study Self-Monitoring of Blood Glucose and Outcome in Patients with Type 2 Diabetes (or ROSSO)-in-praxi follow-up. The evidence for the benefit of SMBG both in insulin-treated and non-insulin-treated patients with diabetes is also supported by published reviews, meta-analyses, and guidelines. A Cochrane review reported an overall effect of SMBG on glycemic control up to 6 months after initiation, which was considered to subside after 12 months. Particularly, the 12-month analysis has been criticized for the inclusion of a small number of studies and the conclusions drawn. The aim of this article is to review key publications on SMBG and also to put them into perspective with regard to results of the Cochrane review and current aspects of diabetes management.
Resumo:
Work dealing with the monitoring of alcohol markers by CE performed during the past two decades led to the development of assays for carbohydrate-deficient transferrin (CDT), ethyl sulfate, ethyl glucuronide, and phosphatidylethanol in body fluids and first attempts for the detection of the urinary 5-hydroxytryptophol/5-hydroxyindoleacetic acid ratio and stable hemoglobin acetaldehyde adducts. Most notably are assays for CDT that have been commercialized and are being used in many laboratories under routine conditions. This paper provides insight into the development, specifications, and use of the currently known CE-based assays suitable to detect alcohol markers. The achievements reached so far indicate that CE is an attractive technology for monitoring alcohol markers. This is particularly seen with the CDT assays that do not require an elaborate sample pretreatment and thus could be fully automated for high-throughput analyses on multicapillary instruments.
Resumo:
Threo-methylphenidate is a chiral psychostimulant drug widely prescribed to treat attention-deficit hyperactivity disorder in children and adolescents. An enantioselective CE-based assay with head-column field-amplified sample stacking for analysis of threo-methylphenidate enantiomers in liquid/liquid extracts of oral fluid is described. Analytes are electrokinetically injected across a short water plug placed at the capillary inlet and become stacked at the interface between plug and buffer. Enantiomeric separation occurs within a few minutes in a pH 3.0 phosphate/triethanolamine buffer containing 20 mg/mL (2-hydroxypropyl)-β-CD as chiral selector. The assay with six point multilevel internal calibration provides a linear response for each enantiomer in the 10-200 ng/mL concentration range, is simple, inexpensive, and reproducible, and has an LOQ of 5 ng/mL. It was applied to oral fluid patient samples that were collected up to 12 h after intake of an immediate release tablet and two different extended release formulations with racemic methylphenidate. Drug profiles could thereby be assessed in a stereoselective way. Almost no levorotary threo-methylphenidate enantiomer was detected after intake of the two extended release formulations, whereas this enantiomer was detected during the first 2.5 h after intake of the immediate release preparation. The noninvasive collection of oral fluid is an attractive alternative to plasma for the monitoring of methylphenidate exposure in the pediatric community.
Resumo:
PURPOSE Therapeutic drug monitoring of patients receiving once daily aminoglycoside therapy can be performed using pharmacokinetic (PK) formulas or Bayesian calculations. While these methods produced comparable results, their performance has never been checked against full PK profiles. We performed a PK study in order to compare both methods and to determine the best time-points to estimate AUC0-24 and peak concentrations (C max). METHODS We obtained full PK profiles in 14 patients receiving a once daily aminoglycoside therapy. PK parameters were calculated with PKSolver using non-compartmental methods. The calculated PK parameters were then compared with parameters estimated using an algorithm based on two serum concentrations (two-point method) or the software TCIWorks (Bayesian method). RESULTS For tobramycin and gentamicin, AUC0-24 and C max could be reliably estimated using a first serum concentration obtained at 1 h and a second one between 8 and 10 h after start of the infusion. The two-point and the Bayesian method produced similar results. For amikacin, AUC0-24 could reliably be estimated by both methods. C max was underestimated by 10-20% by the two-point method and by up to 30% with a large variation by the Bayesian method. CONCLUSIONS The ideal time-points for therapeutic drug monitoring of once daily administered aminoglycosides are 1 h after start of a 30-min infusion for the first time-point and 8-10 h after start of the infusion for the second time-point. Duration of the infusion and accurate registration of the time-points of blood drawing are essential for obtaining precise predictions.
Resumo:
This article describes in short sections the use and interpretation of indirect blood pressure measurements, central venous pressure, body temperature, pulse oximetry, end tidal CO2 measurements, pulse and heart rate, urine production and emergency laboratory values. Most of these parameters are directly or indirectly linked to the perfusion of the patient. Optimizing these values are one of the most important goals in emergency and critical care medicine.
Resumo:
INTRODUCTION Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy-autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS Brca1(-/-); p53(-/-) mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response.
Resumo:
Increasing commercial pressures on land are provoking fundamental and far-reaching changes in the relationships between people and land. Much knowledge on land-oriented investments projects currently comes from the media. Although this provides a good starting point, lack of transparency and rapidly changing contexts mean that this is often unreliable. The International Land Coalition, in partnership with Oxfam Novib, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), University of Pretoria, Centre for Development and Environment of the University of Bern (CDE), and GIZ, started to compile an inventory of land-related investments. This project aims to better understand the extent, trends and impacts of land-related investments by supporting an ongoing and systematic stocktaking exercise of the various investment projects currently taking place worldwide. It involves a large number of organizations and individuals working in areas where land transactions are being made, and able to provide details of such investments. The project monitors land transactions in rural areas that imply a transformation of land use rights from communities and smallholders to commercial use, and are made both by domestic and foreign investors (private actors, governments, government-back private investors). The focus is on investments for food or agrofuel production, timber extraction, carbon trading, mineral extraction, conservation and tourism. A novel way of using ITC to document land acquisitions in a spatially explicit way and by using an approach called “crowdsourcing” is being developed. This approach will allow actors to share information and knowledge directly and at any time on a public platform, where it will be scrutinized in terms of reliability and cross checked with other sources. Up to now, over 1200 deals have been recorded across 96 countries. Details of such transactions have been classified in a matrix and distributed to over 350 contacts worldwide for verification. The verified information has been geo-referenced and represented in two global maps. This is an open database enabling a continued monitoring exercise and the improvement of data accuracy. More information will be released over time. The opportunities arise from overcoming constraints by incomplete information by proposing a new way of collecting, enhancing and sharing information and knowledge in a more democratic and transparent manner. The intention is to develop interactive knowledge platform where any interested person can share and access information on land deals, their link to involved stakeholders, and their embedding into a geographical context. By making use of new ICT technologies that are more and more in the reach of local stakeholders, as well as open access and web-based spatial information systems, it will become possible to create a dynamic database containing spatial explicit data. Feeding in data by a large number of stakeholders, increasingly also by means of new mobile ITC technologies, will open up new opportunities to analyse, monitor and assess highly dynamic trends of land acquisition and rural transformation.
Resumo:
Purpose: Selective retina therapy (SRT) has shown great promise compared to conventional retinal laser photocoagulation as it avoids collateral damage and selectively targets the retinal pigment epithelium (RPE). Its use, however, is challenging in terms of therapy monitoring and dosage because an immediate tissue reaction is not biomicroscopically discernibel. To overcome these limitations, real-time optical coherence tomography (OCT) might be useful to monitor retinal tissue during laser application. We have thus evaluated a proprietary OCT system for its capability of mapping optical changes introduced by SRT in retinal tissue. Methods: Freshly enucleated porcine eyes, covered in DMEM upon collection were utilized and a total of 175 scans from ex-vivo porcine eyes were analyzed. The porcine eyes were used as an ex-vivo model and results compared to two time-resolved OCT scans, recorded from a patient undergoing SRT treatment (SRT Vario, Medical Laser Center Lübeck). In addition to OCT, fluorescin angiography and fundus photography were performed on the patient and OCT scans were subsequently investigated for optical tissue changes linked to laser application. Results: Biomicroscopically invisible SRT lesions were detectable in OCT by changes in the RPE / Bruch's complex both in vivo and the porcine ex-vivo model. Laser application produced clearly visible optical effects such as hyperreflectivity and tissue distortion in the treated retina. Tissue effects were even discernible in time-resolved OCT imaging when no hyper-reflectivity persisted after treatment. Data from ex-vivo porcine eyes showed similar to identical optical changes while effects visible in OCT appeared to correlate with applied pulse energy, leading to an additional reflective layer when lesions became visible in indirect ophthalmoscopy. Conclusions: Our results support the hypothesis that real-time high-resolution OCT may be a promising modality to obtain additional information about the extent of tissue damage caused by SRT treatment. Data shows that our exvivo porcine model adequately reproduces the effects occurring in-vivo, and thus can be used to further investigate this promising imaging technique.
Resumo:
The role for the novel treatment approach of sodium-glucose cotransporter-2 (SGLT-2) in type 2 diabetes is increasing. Structured self-monitoring of blood glucose (SMBG), based on a less intensive and a more intensive scheme, may contribute to an optimization of SGLT-2 inhibitor based treatment. The current expert recommendation suggests individualized approaches of SMBG, using simple and clinically applicable schemes. Potential benefits of SMBG in SGLT-2 inhibitor based treatment approaches are early assessment of treatment success or failure, timely modification of treatment, detection of hypoglycemic episodes, assessment of glucose excursions, and support of diabetes management and education. The length and frequency of SMBG should depend on the clinical setting and the quality of metabolic control.