957 resultados para Molecular Modeling
Resumo:
Medroxyprogesterone acetate (MPA) has widely been used in hormone replacement therapy (HRT), and is associated with an increased risk of breast cancer, possibly due to disruption of androgen receptor (AR) signaling. In contrast, the synthetic HRT Tibolone does not increase breast density, and is rapidly metabolized to estrogenic 3α-OH-tibolone and 3β-OH-tibolone, and a delta-4 isomer (Δ4-TIB) that has both androgenic and progestagenic properties. Here, we show that 5α-dihydrotestosterone (DHT) and Δ4-TIB, but not MPA, stabilize AR protein levels, initiate specific AR intramolecular interactions critical for AR transcriptional regulation, and increase proliferation of AR positive MDA-MB-453 breast cancer cells. Structural modeling and molecular dynamic simulation indicate that Δ4-TIB induces a more stable AR structure than does DHT, and MPA a less stable one. Microarray expression analyses confirms that the molecular actions of Δ4-TIB more closely resembles DHT in breast cancer cells than either ligand does to MPA.
Resumo:
Molecular interactions that underlie pathophysiological states are being elucidated using techniques that profile proteomicend points in cellular systems. Within the field of cancer research, protein interaction networks play pivotal roles in the establishment and maintenance of the hallmarks of malignancy, including cell division, invasion, and migration. Multiple complementary tools enable a multifaceted view of how signal protein pathway alterations contribute to pathophysiological states.One pivotal technique is signal pathway profiling of patient tissue specimens. This microanalysis technology provides a proteomic snapshot at one point in time of cells directly procured from the native context of a tumor micro environment. To study the adaptive patterns of signal pathway events over time, before and after experimental therapy, it is necessary to obtain biopsies from patients before, during, and after therapy. A complementary approach is the profiling of cultured cell lines with and without treatment. Cultured cell models provide the opportunity to study short-term signal changes occurring over minutes to hours. Through this type of system, the effects of particular pharmacological agents may be used to test the effects of signal pathway inhibition or activation on multiple endpoints within a pathway. The complexity of the data generated has necessitated the development of mathematical models for optimal interpretation of interrelated signaling pathways. In combination,clinical proteomic biopsy profiling, tissue culture proteomic profiling, and mathematical modeling synergistically enable a deeper understanding of how protein associations lead to disease states and present new insights into the design of therapeutic regimens.
Resumo:
The mesoscale simulation of a lamellar mesophase based on a free energy functional is examined with the objective of determining the relationship between the parameters in the model and molecular parameters. Attention is restricted to a symmetric lamellar phase with equal volumes of hydrophilic and hydrophobic components. Apart from the lamellar spacing, there are two parameters in the free energy functional. One of the parameters, r, determines the sharpness of the interface, and it is shown how this parameter can be obtained from the interface profile in a molecular simulation. The other parameter, A, provides an energy scale. Analytical expressions are derived to relate these parameters to r and A to the bending and compression moduli and the permeation constant in the macroscopic equation to the Onsager coefficient in the concentration diffusion equation. The linear hydrodynamic response predicted by the theory is verified by carrying out a mesoscale simulation using the lattice-Boltzmann technique and verifying that the analytical predictions are in agreement with simulation results. A macroscale model based on the layer thickness field and the layer normal field is proposed, and the relationship between the parameters in the macroscale model from the parameters in the mesoscale free energy functional is obtained.
Resumo:
Quinuclidine grafted cationic bile salts are forming salted hydrogels. An extensive investigation of the effect of the electrolyte and counterions on the gelation has been envisaged. The special interest of the quinuclidine grafted bile salt is due to its broader experimental range of gelation to study the effect of electrolyte. Rheological features of the hydrogels are typical of enthalpic networks exhibiting a scaling law of the elastic shear modulus with the concentration (scaling exponent 2.2) modeling cellular solids in which the bending modulus is the dominant parameter. The addition of monovalent salt (NaCl) favors the formation of gels in a first range (0.00117 g cm-3 (0.02 M) < TNaCl < 0.04675 g cm-3 (0.8 M)). At larger salt concentrations, the gels become more heterogeneous with nodal zones in the micron scale. Small-angle neutron scattering experiments have been used to characterize the rigid fibers (
Resumo:
Introduction Two symposia on “cardiovascular diseases and vulnerable plaques” Cardiovascular disease (CVD) is the leading cause of death worldwide. Huge effort has been made in many disciplines including medical imaging, computational modeling, bio- mechanics, bioengineering, medical devices, animal and clinical studies, population studies as well as genomic, molecular, cellular and organ-level studies seeking improved methods for early detection, diagnosis, prevention and treatment of these diseases [1-14]. However, the mechanisms governing the initiation, progression and the occurrence of final acute clinical CVD events are still poorly understood. A large number of victims of these dis- eases who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs [8,9]. Most cardiovascular diseases are associated with vulnerable plaques. A grand challenge here is to develop new imaging techniques, predictive methods and patient screening tools to identify vulnerable plaques and patients who are more vulnerable to plaque rupture and associated clinical events such as stroke and heart attack, and recommend proper treatment plans to prevent those clinical events from happening. Articles in this special issue came from two symposia held recently focusing on “Cardio-vascular Diseases and Vulnerable Plaques: Data, Modeling, Predictions and Clinical Applications.” One was held at Worcester Polytechnic Institute (WPI), Worcester, MA, USA, July 13-14, 2014, right after the 7th World Congress of Biomechanics. This symposium was endorsed by the World Council of Biomechanics, and partially supported by a grant from NIH-National Institute of Biomedical Image and Bioengineering. The other was held at Southeast University (SEU), Nanjing, China, April 18-20, 2014.
Resumo:
A perturbative approach is developed to determine, term by term, the contributions of the various forces to the excimer potentials of the singlet and triplet excimers. The results show that the singlet excimer of naphthalene is more stable than the corresponding triplet excimer primarily due to large contributions of the exciton-resonance and the dispersion energy terms. The variation of the various terms with the conformations of the excimers suggests that the singlet and triplet excimers of naphthalene cannot have identical structure.
Resumo:
Objectives In 2012, the National Institute for Health and Care Excellence assessed dasatinib, nilotinib, and standard-dose imatinib as first-line treatment of chronic phase chronic myelogenous leukemia (CML). Licensing of these alternative treatments was based on randomized controlled trials assessing complete cytogenetic response (CCyR) and major molecular response (MMR) at 12 months as primary end points. We use this case study to illustrate the validation of CCyR and MMR as surrogate outcomes for overall survival in CML and how this evidence was used to inform National Institute for Health and Care Excellence’s recommendation on the public funding of these first-line treatments for CML. Methods We undertook a systematic review and meta-analysis to quantify the association between CCyR and MMR at 12 months and overall survival in patients with chronic phase CML. We estimated life expectancy by extrapolating long-term survival from the weighted overall survival stratified according to the achievement of CCyR and MMR. Results Five studies provided data on the observational association between CCyR or MMR and overall survival. Based on the pooled association between CCyR and MMR and overall survival, our modeling showed comparable predicted mean duration of survival (21–23 years) following first-line treatment with imatinib, dasatinib, or nilotinib. Conclusions This case study illustrates the consideration of surrogate outcome evidence in health technology assessment. Although it is often recommended that the acceptance of surrogate outcomes be based on randomized controlled trial data demonstrating an association between the treatment effect on both the surrogate outcome and the final outcome, this case study shows that policymakers may be willing to accept a lower level of evidence (i.e., observational association).
Resumo:
High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.
Resumo:
Advancements in the analysis techniques have led to a rapid accumulation of biological data in databases. Such data often are in the form of sequences of observations, examples including DNA sequences and amino acid sequences of proteins. The scale and quality of the data give promises of answering various biologically relevant questions in more detail than what has been possible before. For example, one may wish to identify areas in an amino acid sequence, which are important for the function of the corresponding protein, or investigate how characteristics on the level of DNA sequence affect the adaptation of a bacterial species to its environment. Many of the interesting questions are intimately associated with the understanding of the evolutionary relationships among the items under consideration. The aim of this work is to develop novel statistical models and computational techniques to meet with the challenge of deriving meaning from the increasing amounts of data. Our main concern is on modeling the evolutionary relationships based on the observed molecular data. We operate within a Bayesian statistical framework, which allows a probabilistic quantification of the uncertainties related to a particular solution. As the basis of our modeling approach we utilize a partition model, which is used to describe the structure of data by appropriately dividing the data items into clusters of related items. Generalizations and modifications of the partition model are developed and applied to various problems. Large-scale data sets provide also a computational challenge. The models used to describe the data must be realistic enough to capture the essential features of the current modeling task but, at the same time, simple enough to make it possible to carry out the inference in practice. The partition model fulfills these two requirements. The problem-specific features can be taken into account by modifying the prior probability distributions of the model parameters. The computational efficiency stems from the ability to integrate out the parameters of the partition model analytically, which enables the use of efficient stochastic search algorithms.
Resumo:
A better understanding of the limiting step in a first order phase transition, the nucleation process, is of major importance to a variety of scientific fields ranging from atmospheric sciences to nanotechnology and even to cosmology. This is due to the fact that in most phase transitions the new phase is separated from the mother phase by a free energy barrier. This barrier is crossed in a process called nucleation. Nowadays it is considered that a significant fraction of all atmospheric particles is produced by vapor-to liquid nucleation. In atmospheric sciences, as well as in other scientific fields, the theoretical treatment of nucleation is mostly based on a theory known as the Classical Nucleation Theory. However, the Classical Nucleation Theory is known to have only a limited success in predicting the rate at which vapor-to-liquid nucleation takes place at given conditions. This thesis studies the unary homogeneous vapor-to-liquid nucleation from a statistical mechanics viewpoint. We apply Monte Carlo simulations of molecular clusters to calculate the free energy barrier separating the vapor and liquid phases and compare our results against the laboratory measurements and Classical Nucleation Theory predictions. According to our results, the work of adding a monomer to a cluster in equilibrium vapour is accurately described by the liquid drop model applied by the Classical Nucleation Theory, once the clusters are larger than some threshold size. The threshold cluster sizes contain only a few or some tens of molecules depending on the interaction potential and temperature. However, the error made in modeling the smallest of clusters as liquid drops results in an erroneous absolute value for the cluster work of formation throughout the size range, as predicted by the McGraw-Laaksonen scaling law. By calculating correction factors to Classical Nucleation Theory predictions for the nucleation barriers of argon and water, we show that the corrected predictions produce nucleation rates that are in good comparison with experiments. For the smallest clusters, the deviation between the simulation results and the liquid drop values are accurately modelled by the low order virial coefficients at modest temperatures and vapour densities, or in other words, in the validity range of the non-interacting cluster theory by Frenkel, Band and Bilj. Our results do not indicate a need for a size dependent replacement free energy correction. The results also indicate that Classical Nucleation Theory predicts the size of the critical cluster correctly. We also presents a new method for the calculation of the equilibrium vapour density, surface tension size dependence and planar surface tension directly from cluster simulations. We also show how the size dependence of the cluster surface tension in equimolar surface is a function of virial coefficients, a result confirmed by our cluster simulations.
Resumo:
A better understanding of the limiting step in a first order phase transition, the nucleation process, is of major importance to a variety of scientific fields ranging from atmospheric sciences to nanotechnology and even to cosmology. This is due to the fact that in most phase transitions the new phase is separated from the mother phase by a free energy barrier. This barrier is crossed in a process called nucleation. Nowadays it is considered that a significant fraction of all atmospheric particles is produced by vapor-to liquid nucleation. In atmospheric sciences, as well as in other scientific fields, the theoretical treatment of nucleation is mostly based on a theory known as the Classical Nucleation Theory. However, the Classical Nucleation Theory is known to have only a limited success in predicting the rate at which vapor-to-liquid nucleation takes place at given conditions. This thesis studies the unary homogeneous vapor-to-liquid nucleation from a statistical mechanics viewpoint. We apply Monte Carlo simulations of molecular clusters to calculate the free energy barrier separating the vapor and liquid phases and compare our results against the laboratory measurements and Classical Nucleation Theory predictions. According to our results, the work of adding a monomer to a cluster in equilibrium vapour is accurately described by the liquid drop model applied by the Classical Nucleation Theory, once the clusters are larger than some threshold size. The threshold cluster sizes contain only a few or some tens of molecules depending on the interaction potential and temperature. However, the error made in modeling the smallest of clusters as liquid drops results in an erroneous absolute value for the cluster work of formation throughout the size range, as predicted by the McGraw-Laaksonen scaling law. By calculating correction factors to Classical Nucleation Theory predictions for the nucleation barriers of argon and water, we show that the corrected predictions produce nucleation rates that are in good comparison with experiments. For the smallest clusters, the deviation between the simulation results and the liquid drop values are accurately modelled by the low order virial coefficients at modest temperatures and vapour densities, or in other words, in the validity range of the non-interacting cluster theory by Frenkel, Band and Bilj. Our results do not indicate a need for a size dependent replacement free energy correction. The results also indicate that Classical Nucleation Theory predicts the size of the critical cluster correctly. We also presents a new method for the calculation of the equilibrium vapour density, surface tension size dependence and planar surface tension directly from cluster simulations. We also show how the size dependence of the cluster surface tension in equimolar surface is a function of virial coefficients, a result confirmed by our cluster simulations.
Resumo:
Molecular Dynamics (MD) simulations provide an atomic level account of the molecular motions and have proven to be immensely useful in the investigation of the dynamical structure of proteins. Once an MD trajectory is obtained, specific interactions at the molecular level can be directly studied by setting up appropriate combinations of distance and angle monitors. However, if a study of the dynamical behavior of secondary structures in proteins becomes important, this approach can become unwieldy. We present herein a method to study the dynamical stability of secondary structures in proteins, based on a relatively simple analysis of backbone hydrogen bonds. The method was developed for studying the thermal unfolding of beta-lactamases, but can be extended to other systems and adapted to study relevant properties.
Resumo:
The modes of binding of adenosine 2'-monophosphate (2'-AMP) to the enzyme ribonuclease (RNase) T1 were determined by computer modelling studies. The phosphate moiety of 2'-AMP binds at the primary phosphate binding site. However, adenine can occupy two distinct sites--(1) The primary base binding site where the guanine of 2'-GMP binds and (2) The subsite close to the N1 subsite for the base on the 3'-side of guanine in a guanyl dinucleotide. The minimum energy conformers corresponding to the two modes of binding of 2'-AMP to RNase T1 were found to be of nearly the same energy implying that in solution 2'-AMP binds to the enzyme in both modes. The conformation of the inhibitor and the predicted hydrogen bonding scheme for the RNase T1-2'-AMP complex in the second binding mode (S) agrees well with the reported x-ray crystallographic study. The existence of the first mode of binding explains the experimental observations that RNase T1 catalyses the hydrolysis of phosphodiester bonds adjacent to adenosine at high enzyme concentrations. A comparison of the interactions of 2'-AMP and 2'-GMP with RNase T1 reveals that Glu58 and Asn98 at the phosphate binding site and Glu46 at the base binding site preferentially stabilise the enzyme-2'-GMP complex.