850 resultados para Model Identification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of modeling solar energetic particle (SEP) events is important to both space weather research and forecasting, and yet it has seen relatively little progress. Most important SEP events are associated with coronal mass ejections (CMEs) that drive coronal and interplanetary shocks. These shocks can continuously produce accelerated particles from the ambient medium to well beyond 1 AU. This paper describes an effort to model real SEP events using a Center for Integrated Space weather Modeling (CISM) MHD solar wind simulation including a cone model of CMEs to initiate the related shocks. In addition to providing observation-inspired shock geometry and characteristics, this MHD simulation describes the time-dependent observer field line connections to the shock source. As a first approximation, we assume a shock jump-parameterized source strength and spectrum, and that scatter-free transport occurs outside of the shock source, thus emphasizing the role the shock evolution plays in determining the modeled SEP event profile. Three halo CME events on May 12, 1997, November 4, 1997 and December 13, 2006 are used to test the modeling approach. While challenges arise in the identification and characterization of the shocks in the MHD model results, this approach illustrates the importance to SEP event modeling of globally simulating the underlying heliospheric event. The results also suggest the potential utility of such a model for forcasting and for interpretation of separated multipoint measurements such as those expected from the STEREO mission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much work has supported the idea that recategorization of ingroups and outgroups into a superordinate category can have beneficial effects for intergroup relations. Recently, however, increases in bias following recategorization have been observed in some contexts. It is argued that such unwanted consequences of recategorization will only be apparent for perceivers who are highly committed to their ingroup subgroups. In Experiments 1 to 3, the authors observed, on both explicit and implicit measures, that an increase in bias following recategorization occurred only for high subgroup identifiers. In Experiment 4, it was found that maintaining the salience of subgroups within a recategorized superordinate group averted this increase in bias for high identifiers and led overall to the lowest levels of bias. These findings are discussed in the context of recent work on the Common Ingroup Identity Model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Question: What are the key physiological and life-history trade-offs responsible for the evolution of different suites of plant traits (strategies) in different environments? Experimental methods: Common-garden experiments were performed on physiologically realistic model plants, evolved in contrasting environments, in computer simulations. This allowed the identification of the trade-offs that resulted in different suites of traits (strategies). The environments considered were: resource rich, low disturbance (competitive); resource poor, low disturbance (stressed); resource rich, high disturbance (disturbed); and stressed environments containing herbivores (grazed). Results: In disturbed environments, plants increased reproduction at the expense of ability to compete for light and nitrogen. In competitive environments, plants traded off reproductive output and leaf production for vertical growth. In stressed environments, plants traded off vertical growth and reproductive output for nitrogen acquisition, contradicting Grime's (2001) theory that slow-growing, competitively inferior strategies are selected in stressed environments. The contradiction is partly resolved by incorporating herbivores into the stressed environment, which selects for increased investment in defence, at the expense of competitive ability and reproduction. Conclusion: Our explicit modelling of trade-offs produces rigorous testable explanations of observed associations between suites of traits and environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study used the novel approach of statistical modelling to investigate the control of hypothalamic-pituitary-adrenal (HPA) axis and quantify temporal relationships between hormones. Two experimental paradigms were chosen, insulin-induced hypoglycaemia and 2 h transport, to assess differences in control between noncognitive and cognitive stimuli. Vasopressin and corticotropin-releasing hormone (CRH) were measured in hypophysial portal plasma, and adrenocorticotropin hormone (ACTH) and cortisol in jugular plasma of conscious sheep, and deconvolution analysis was used to calculate secretory rates, before modelling. During hypoglycaemia, the relationship between plasma glucose and vasopressin or CRH was best described by log(10) transforming variables (i.e. a positive power-curve relationship). A negative-feedback relationship with log(10) cortisol concentration 2 h previously was detected. Analysis of the 'transport' stimulus suggested that the strength of the perceived stimulus decreased over time after accounting for cortisol facilitation and negative-feedback. The time course of vasopressin and CRH responses to each stimulus were different However, at the pituitary level, the data suggested that log(10) ACTH secretion rate was related to log(10) vasopressin and CRH concentrations with very similar regression coefficients and an identical ratio of actions (2.3 : 1) for both stimuli. Similar magnitude negative-feedback effects of log(10) cortisol at -110 min (hypoglycaemia) or -40 min (transport) were detected, and both models contained a stimulatory relationship with cortisol at 0 min (facilitation). At adrenal gland level, cortisol secretory rates were related to simultaneously measured untransformed ACTH concentration but the regression coefficient for the hypoglycaemia model was 2.5-fold greater than for transport. No individual sustained maximum cortisol secretion for longer than 20 min during hypoglycaemia and 40 min during transport. These unique models demonstrate that corticosteroid negative-feedback is a significant control mechanism at both the pituitary and hypothalamus. The amplitude of HPA response may be related to stimulus intensity and corticosteroid negative-feedback, while duration depended on feedback alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness, including three algorithms using combined A- or D-optimality or PRESS statistic (Predicted REsidual Sum of Squares) with regularised orthogonal least squares algorithm respectively. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalisation scheme in orthogonal least squares or regularised orthogonal least squares has been extended such that the new algorithms are computationally efficient. A numerical example is included to demonstrate effectiveness of the algorithms. Copyright (C) 2003 IFAC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic neural networks (DNNs), which are also known as recurrent neural networks, are often used for nonlinear system identification. The main contribution of this letter is the introduction of an efficient parameterization of a class of DNNs. Having to adjust less parameters simplifies the training problem and leads to more parsimonious models. The parameterization is based on approximation theory dealing with the ability of a class of DNNs to approximate finite trajectories of nonautonomous systems. The use of the proposed parameterization is illustrated through a numerical example, using data from a nonlinear model of a magnetic levitation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel particle swarm optimisation (PSO) tuned radial basis function (RBF) network model is proposed for identification of non-linear systems. At each stage of orthogonal forward regression (OFR) model construction process, PSO is adopted to tune one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is often more efficient in model construction. The effectiveness of the proposed PSO aided OFR algorithm for constructing tunable node RBF models is demonstrated using three real data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide a system identification framework for the analysis of THz-transient data. The subspace identification algorithm for both deterministic and stochastic systems is used to model the time-domain responses of structures under broadband excitation. Structures with additional time delays can be modelled within the state-space framework using additional state variables. We compare the numerical stability of the commonly used least-squares ARX models to that of the subspace N4SID algorithm by using examples of fourth-order and eighth-order systems under pulse and chirp excitation conditions. These models correspond to structures having two and four modes simultaneously propagating respectively. We show that chirp excitation combined with the subspace identification algorithm can provide a better identification of the underlying mode dynamics than the ARX model does as the complexity of the system increases. The use of an identified state-space model for mode demixing, upon transformation to a decoupled realization form is illustrated. Applications of state-space models and the N4SID algorithm to THz transient spectroscopy as well as to optical systems are highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This letter introduces a new robust nonlinear identification algorithm using the Predicted REsidual Sums of Squares (PRESS) statistic and for-ward regression. The major contribution is to compute the PRESS statistic within a framework of a forward orthogonalization process and hence construct a model with a good generalization property. Based on the properties of the PRESS statistic the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of identification of a nonlinear dynamic system is considered. A two-layer neural network is used for the solution of the problem. Systems disturbed with unmeasurable noise are considered, although it is known that the disturbance is a random piecewise polynomial process. Absorption polynomials and nonquadratic loss functions are used to reduce the effect of this disturbance on the estimates of the optimal memory of the neural-network model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new state estimator algorithm is based on a neurofuzzy network and the Kalman filter algorithm. The major contribution of the paper is recognition of a bias problem in the parameter estimation of the state-space model and the introduction of a simple, effective prefiltering method to achieve unbiased parameter estimates in the state-space model, which will then be applied for state estimation using the Kalman filtering algorithm. Fundamental to this method is a simple prefiltering procedure using a nonlinear principal component analysis method based on the neurofuzzy basis set. This prefiltering can be performed without prior system structure knowledge. Numerical examples demonstrate the effectiveness of the new approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modelling of a nonlinear stochastic dynamical processes from data involves solving the problems of data gathering, preprocessing, model architecture selection, learning or adaptation, parametric evaluation and model validation. For a given model architecture such as associative memory networks, a common problem in non-linear modelling is the problem of "the curse of dimensionality". A series of complementary data based constructive identification schemes, mainly based on but not limited to an operating point dependent fuzzy models, are introduced in this paper with the aim to overcome the curse of dimensionality. These include (i) a mixture of experts algorithm based on a forward constrained regression algorithm; (ii) an inherent parsimonious delaunay input space partition based piecewise local lineal modelling concept; (iii) a neurofuzzy model constructive approach based on forward orthogonal least squares and optimal experimental design and finally (iv) the neurofuzzy model construction algorithm based on basis functions that are Bézier Bernstein polynomial functions and the additive decomposition. Illustrative examples demonstrate their applicability, showing that the final major hurdle in data based modelling has almost been removed.