974 resultados para Mobilization
Resumo:
Devolatilization reactions and subsequent transfer of fluid from subducted oceanic crust into the overlying mantle wedge are important processes, which are responsible for the specific geochemical characteristics of subduction-related metamorphic rocks, as well as those of arc magmatism. To better understand the geochemical fingerprint induced by fluid mobilization during dehydration and rehydration processes related to subduction zone metamorphism, the trace element and rare earth element (REE) distribution patterns in HP-LT metamorphic assemblages in eclogite-, blueschist- and greenschist-facies rocks of the Ile de Groix were obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) analysis. This study focuses on 10 massive basic rocks representing former hydrothermally altered mid-ocean ridge basalts (MORB), four banded basic rocks of volcano-sedimentary origin and one micaschist. The main hosts for incompatible trace elements are epidote (REE, Th, U, Pb, Sr), garnet [Y, heavy REE (HREE)], phengite (Cs, Rb, Ba, B), titanite [Ti, Nb, Ta, REE; HREE > LREE (light REE)], rutile (Ti, Nb, Ta) and apatite (REE, Sr). The trace element contents of omphacite, amphibole, albite and chlorite are low. The incompatible trace element contents of minerals are controlled by the stable metamorphic mineral assemblage and directly related to the appearance, disappearance and reappearance of minerals, especially epidote, garnet, titanite, rutile and phengite, during subduction zone metamorphism. Epidote is a key mineral in the trace element exchange process because of its large stability field, ranging from lower greenschist- to blueschist- and eclogite-facies conditions. Different generations of epidote are generally observed and related to the coexisting phases at different stages of the metamorphic cycle (e.g. lawsonite, garnet, titanite). Epidote thus controls most of the REE budget during the changing P-T conditions along the prograde and retrograde path. Phengite also plays an important role in determining the large ion lithophile element (LILE) budget, as it is stable to high P-T conditions. The breakdown of phengite causes the release of LILE during retrogression. A comparison of trace element abundances in whole-rocks and minerals shows that the HP-LT metamorphic rocks largely retain the geochemical characteristics of their basic, volcano-sedimentary and pelitic protoliths, including a hydrothermal alteration overprint before the subduction process. A large part of the incompatible trace elements remained trapped in the rocks and was recycled within the various metamorphic assemblages stable under changing metamorphic conditions during the subduction process, indicating that devolatilization reactions in massive basic rocks do not necessarily imply significant simultaneous trace element and REE release.
Resumo:
Proteins secreted from adipose tissue are increasingly recognized to play an important role in the regulation of glucose metabolism. However, much less is known about their effect on lipid metabolism. The fasting-induced adipose factor (FIAF/angiopoietin-like protein 4/peroxisome proliferator-activated receptor gamma angiopoietin-related protein) was previously identified as a target of hypolipidemic fibrate drugs and insulin-sensitizing thiazolidinediones. Using transgenic mice that mildly overexpress FIAF in peripheral tissues we show that FIAF is an extremely powerful regulator of lipid metabolism and adiposity. FIAF overexpression caused a 50% reduction in adipose tissue weight, partly by stimulating fatty acid oxidation and uncoupling in fat. In addition, FIAF overexpression increased plasma levels of triglycerides, free fatty acids, glycerol, total cholesterol, and high density lipoprotein (HDL)-cholesterol. Functional tests indicated that FIAF overexpression severely impaired plasma triglyceride clearance but had no effect on very low density lipoprotein production. The effects of FIAF overexpression were amplified by a high fat diet, resulting in markedly elevated plasma and liver triglycerides, plasma free fatty acids, and plasma glycerol levels, and impaired glucose tolerance in FIAF transgenic mice fed a high fat diet. Remarkably, in mice the full-length form of FIAF was physically associated with HDL, whereas truncated FIAF was associated with low density lipoprotein. In human both full-length and truncated FIAF were associated with HDL. The composite data suggest that via physical association with plasma lipoproteins, FIAF acts as a powerful signal from fat and other tissues to prevent fat storage and stimulate fat mobilization. Our data indicate that disturbances in FIAF signaling might be involved in dyslipidemia.
Resumo:
Recent studies of cancer patients revealed high diversity in oncogenic mechanisms, leading to increased treatment individualization for subgroups of patients with frequent cancers. A similar development may not be possible for patients with rare cancers, such as Merkel cell carcinoma (MCC). Finding shared disease mechanisms may open new options to understanding and treating such tumors. Tumor-infiltrating CD8+ T cells are frequently associated with favorable clinical outcome in a remarkably large spectrum of cancers. In this issue, Afanasiev et al. suggest a mechanism that may hinder the tumor homing of CD8+ T cells in MCC patients. It is possible that therapeutic mobilization of anti-cancer T cells may be useful in patients who share this specific immune biological feature.
Resumo:
T cells expressing T cell receptor (TCR) complexes that lack CD3 delta, either due to deletion of the CD3 delta gene, or by replacement of the connecting peptide of the TCR alpha chain, exhibit severely impaired positive selection and TCR-mediated activation of CD8 single-positive T cells. Because the same defects have been observed in mice expressing no CD8 beta or tailless CD8 beta, we examined whether CD3 delta serves to couple TCR.CD3 with CD8. To this end we used T cell hybridomas and transgenic mice expressing the T1 TCR, which recognizes a photoreactive derivative of the PbCS 252-260 peptide in the context of H-2K(d). We report that, in thymocytes and hybridomas expressing the T1 TCR.CD3 complex, CD8 alpha beta associates with the TCR. This association was not observed on T1 hybridomas expressing only CD8 alpha alpha or a CD3 delta(-) variant of the T1 TCR. CD3 delta was selectively co-immunoprecipitated with anti-CD8 antibodies, indicating an avid association of CD8 with CD3 delta. Because CD8 alpha beta is a raft constituent, due to this association a fraction of TCR.CD3 is raft-associated. Cross-linking of these TCR-CD8 adducts results in extensive TCR aggregate formation and intracellular calcium mobilization. Thus, CD3 delta couples TCR.CD3 with raft-associated CD8, which is required for effective activation and positive selection of CD8(+) T cells.
Resumo:
Fluorescence-labeled soluble major histocompatibility complex class I-peptide "tetramers" constitute a powerful tool to detect and isolate antigen-specific CD8(+) T cells by flow cytometry. Conventional "tetramers" are prepared by refolding of heavy and light chains with a specific peptide, enzymatic biotinylation at an added C-terminal biotinylation sequence, and "tetramerization" by reaction with phycoerythrin- or allophycocyanin-labeled avidin derivatives. We show here that such preparations are heterogeneous and describe a new procedure that allows the preparation of homogeneous tetra- or octameric major histocompatibility complex-peptide complexes. These compounds were tested on T1 cytotoxic T lymphocytes (CTLs), which recognize the Plasmodium berghei circumsporzoite peptide 252-260 (SYIPSAEKI) containing photoreactive 4-azidobenzoic acid on Lys(259) in the context of H-2K(d). We report that mutation of the CD8 binding site of K(d) greatly impairs the binding of tetrameric but not octameric or multimeric K(d)-PbCS(ABA) complexes to CTLs. This mutation abolishes the ability of the octamer to elicit significant phosphorylation of CD3, intracellular calcium mobilization, and CTL degranulation. Remarkably, however, this octamer efficiently activates CTLs for Fas (CD95)-dependent apoptosis.
Resumo:
PURPOSE: Local breast cancer relapse after breast-saving surgery and radiotherapy is associated with increased risk of distant metastasis formation. The mechanisms involved remain largely elusive. We used the well-characterized 4T1 syngeneic, orthotopic breast cancer model to identify novel mechanisms of postradiation metastasis. EXPERIMENTAL DESIGN: 4T1 cells were injected in 20 Gy preirradiated mammary tissue to mimic postradiation relapses, or in nonirradiated mammary tissue, as control, of immunocompetent BALB/c mice. Molecular, biochemical, cellular, histologic analyses, adoptive cell transfer, genetic, and pharmacologic interventions were carried out. RESULTS: Tumors growing in preirradiated mammary tissue had reduced angiogenesis and were more hypoxic, invasive, and metastatic to lung and lymph nodes compared with control tumors. Increased metastasis involved the mobilization of CD11b(+)c-Kit(+)Ly6G(high)Ly6C(low)(Gr1(+)) myeloid cells through the HIF1-dependent expression of Kit ligand (KitL) by hypoxic tumor cells. KitL-mobilized myeloid cells homed to primary tumors and premetastatic lungs, to give rise to CD11b(+)c-Kit(-) cells. Pharmacologic inhibition of HIF1, silencing of KitL expression in tumor cells, and inhibition of c-Kit with an anti-c-Kit-blocking antibody or with a tyrosine kinase inhibitor prevented the mobilization of CD11b(+)c-Kit(+) cells and attenuated metastasis. C-Kit inhibition was also effective in reducing mobilization of CD11b(+)c-Kit(+) cells and inhibiting lung metastasis after irradiation of established tumors. CONCLUSIONS: Our work defines KitL/c-Kit as a previously unidentified axis critically involved in promoting metastasis of 4T1 tumors growing in preirradiated mammary tissue. Pharmacologic inhibition of this axis represents a potential therapeutic strategy to prevent metastasis in breast cancer patients with local relapses after radiotherapy. Clin Cancer Res; 18(16); 4365-74. ©2012 AACR.
Resumo:
BACKGROUND: The Thai-Cambodian border has been known as the origin of antimalarial drug resistance for the past 30 years. There is a highly diverse market for antimalarials in this area, and improved knowledge of drug pressure would be useful to target interventions aimed at reducing inappropriate drug use. METHODS: Baseline samples from 125 patients with falciparum malaria recruited for 2 in vivo studies (in Preah Vihear and Pursat provinces) were analyzed for the presence of 14 antimalarials in a single run, by means of a liquid chromatography-tandem mass spectrometry assay. RESULTS: Half of the patients had residual drug concentrations above the lower limit of calibration for at least 1 antimalarial at admission. Among the drugs detected were the currently used first-line drugs mefloquine (25% and 35% of patients) and piperaquine (15% of patients); the first-line drug against vivax malaria, chloroquine (25% and 41% of patients); and the former first-line drug, quinine (5% and 34% patients). CONCLUSIONS: The findings demonstrate that there is high drug pressure and that many people still seek treatment in the private and informal sector, where appropriate treatment is not guaranteed. Promotion of comprehensive behavioral change, communication, community-based mobilization, and advocacy are vital to contain the emergence and spread of parasite resistance against new antimalarials.
Resumo:
Immunotherapy is a promising means to fight cancer, prompting a steady increase in clinical trials and correlative laboratory studies in this field. As antitumor T cells play central roles in immunity against malignant diseases, most immunotherapeutic protocols aim to induce and/or strengthen their function. Various treatment strategies have elicited encouraging clinical responses; however, major challenges have been uncovered that should be addressed in order to fully exploit the potential of immunotherapy. Here, we outline pitfalls for the mobilization of antitumor T cells and offer solutions to improve their therapeutic efficacy. We provide a critical perspective on the main methodologies used to characterize T-cell responses to cancer therapies, with a focus on discrepancies between T-cell attributes measured in vitro and protective responses in vivo. This review altogether provides recommendations to optimize the design of future clinical trials and highlights important considerations for the proficient analysis of clinical specimens available for research.
Resumo:
Previous functional imaging studies have pointed to the compensatory recruitment of cortical circuits in old age in order to counterbalance the loss of neural efficiency and preserve cognitive performance. Recent electroencephalographic (EEG) analyses reported age-related deficits in the amplitude of an early positive-negative working memory (PN(wm)) component as well as changes in working memory (WM)-load related brain oscillations during the successful performance of the n-back task. To explore the age-related differences of EEG activation in the face of increasing WM demands, we assessed the PN(wm) component area, parietal alpha event-related synchronization (ERS) as well as frontal theta ERS in 32 young and 32 elderly healthy individuals who successfully performed a highly WM demanding 3-back task. PN(wm) area increased with higher memory loads (3- and 2-back > 0-back tasks) in younger subjects. Older subjects reached the maximal values for this EEG parameter during the less WM demanding 0-back task. They showed a rapid development of an alpha ERS that reached its maximal amplitude at around 800 ms after stimulus onset. In younger subjects, the late alpha ERS occurred between 1,200 and 2,000 ms and its amplitude was significantly higher compared with elders. Frontal theta ERS culmination peak decreased in a task-independent manner in older compared with younger cases. Only in younger individuals, there was a significant decrease in the phasic frontal theta ERS amplitude in the 2- and 3-back tasks compared with the detection and 0-back tasks. These observations suggest that older adults display a rapid mobilization of their neural generators within the parietal cortex to manage very low demanding WM tasks. Moreover, they are less able to activate frontal theta generators during attentional tasks compared with younger persons.
Resumo:
SUMMARY Radiotherapy is commonly and efficiently used to treat solid cancer in the clinic. Experimental evidence however suggests that radiation can promote tumor progression by inducing chronic modifications of the tumor microenvironment. Clinically, these observations are highly relevant to aggressive tumoral lesions relapsing after radiation therapy, a leading cause of patients' death. The investigation and understanding of the biological mechanisms implicated in the malignant progression of post-radiation relapses are therefore of major importance. Here we used a syngeneic (immunocompetent) breast cancer orthotopic xenograft model, to show that local irradiation of the mammary gland promotes the appearance of an invasive and metastatic tumor phenotype. Previous studies in our laboratory revealed that inhibition of tumor-induced angiogenesis and consequent increase in tumor hypoxia promotes metastasis formation through the activation of pro-invasive programs in the tumor cells. Our results extend these observations suggesting that mammary gland irradiation induces the recruitment of CD11b+ cells to both the primary tumor and the lungs at pre-metastatic stages through the hypoxia-dependent induction of Kit-ligand (KITL) expression in primary tumors. Abrogation of KITL expression in tumor cells prevented CD11 b+ cells accumulation in both the primary tumor and lungs and significantly reduced metastases of tumors growing in irradiated mammary gland. Importantly, irradiated mammary gland enhanced tumor-induced mobilization of circulating CD11b+cKit+ myelomonocytic cells through a HIF1- and KITL-dependent process. By cell transfer experiments, mobilized circulating CD11b+cKit+ cells were shown to supply both tumor- and lungs infiltrating CD11b+ cells. Using a blocking antibody against cKit (the KITL receptor), the mobilization of CD11b+cKit+ ceils was prevented as well as lung metastases derived from tumors growing in irradiated mammary gland. Taken together, these results indicate that tumors growing in a pre-irradiated mammary gland partially promote their malignant progression through the distant mobilization of circulating myelomonocytic precursor cells. They identify KITL inhibition and/or cKit receptor neutralization as potentially promising therapeutic approaches for post-radiation relapses. RESUME La radiothérapie est largement utilisée comme traitement de choix de nombreux types de cancers. L'agressivité des récidives tumorales observée en clinique après radiothérapie suggère cependant que le recours à l'irradiation pourrait dans certains cas accélérer la progression tumorale. De récents travaux expérimentaux ont en effet permis d'appuyer cette hypothèse, en montrant notamment l'effet néfaste des modifications chroniques de l'environnement induites par l'irradiation sur la progression tumorale. A l'aide d'un modèle murin syngénique orthotopique de cancer de sein, nous avons pu montrer que l'irradiation locale de la glande mammaire facilite l'invasion et la dissémination métastatique des cellules tumorales en favorisant le recrutement de cellules myéloïdes CD11 b+ vers la tumeur primaire et les poumons à un stade pré-métastatique. Comme mécanisme impliqué dans le recrutement des cellules CD11b+, nous avons pu observer après irradiation locale de la glande mammaire une expression augmentée de Kit-ligand (KITL) dans la tumeur (induite par l'hypoxie) ainsi que la mobilisation de cellules myéloïdes circulantes exprimant le récepteur cKit et précurseurs des cellules CD11b+ infiltrant la tumeur et les poumons. En empêchant la mobilisation par la tumeur de cellules circulantes cKit+ par des approches à la fois génétique et pharmacologique nous avons pu prévenir l'accumulation de cellules myéloïdes CD11 b+ dans la tumeur primaire et les poumons ainsi que la dissémination métastatique induites par' l'irradiation de la glande mammaire. De façon générale, ces résultats montrent que la progression agressive des tumeurs qui se développent dans un environnement irradié repose à la fois sur l'expression tumorale de KITL et la mobilisation de cellules myéloïdes précurseurs cKit*. Ils auront permis d'identifier KITL et/ou cKit comme des cibles thérapeutiques potentielles intéressantes pour le traitement des récidives tumorales après radiothérapie.
Resumo:
In my paper I will present some results about ritual kinship and political mobilization of popular groups in an alpine Valley: the Val de Bagnes, in the Swiss canton of Valais. There are two major reasons to choose the Val de Bagnes for our inquiry about social networks: the existence of sharp political and social conflicts during the 18th and the 19th century and the availability of almost systematic genealogical data between 1700 and 1900. The starting point of my research focuses on this question: what role did kinship and ritual kinship play in the political mobilization of popular groups and in the organization of competing factions? This question allows us to shed light on some other uses and meanings of ritual kinship in the local society. Was ritual kinship a significant instrument for economic cooperation? Or was it a channel for patronage or for privileged social contacts? The analysis highlights the importance of kinship and godparentage for the building of homogeneous social and political networks. If we consider transactions between individuals, the analysis of 19th century Val de Bagnes gives the impression of quite open networks. Men and women tried to diversify their relations in order to avoid strong dependency from powerful patrons. Nevertheless, when we consider the family networks, we can notice that most relations took place in a structured social space or a specific "milieu", were intense contacts enhanced trust, although political allegiances and social choices were not fully predictable on the basis of such preferential patterns. In a politically conflictual society, like 19th century Bagnes, ritual kinship interacted with kinship solidarities and ideological factors shaping dense social networks mostly based on a common political orientation. Such milieus sustained the building of political factions, which show surprising stability over time. In this sense, milieus are important factors to understand political and religious polarization in 19th century Switzerland.
Resumo:
Photodynamic therapy (PDT) has been used as an adjunct to cytoreductive surgery in patients with malignant pleura mesothelioma (MPM). However, it was associated with substantial side effects and found to be only of modest clinical benefit. In contrast, Visudyne®-mediated low-dose PDT has been shown to selectively increase the concentration of macromolecular cytostatic compounds in various tumors grown subpleurally on rodent lungs. Consequently, it was thought that PDT-assisted enhanced tumor penetration for cytostatic agents might be better suited to achieve additional tumor control after cytoreductive surgery for mesothelioma. This effect seems to be mainly related to PDT-mediated modulations of tumor vessels which improve the distribution of circulating, systemically administered chemotherapeutic macromolecular agents. However, the mechanisms involved and the optimization of this effect for therapeutic implications remain to be solved. By using the dorsal skin fold chamber method we demonstrated that both angiogenesis and microcirculation of human mesothelioma xenografts can be continuously assessed in vivo by intravital microscopy. We described a new, simple, reproducible and reliable scoring system for the assessment of tumor angiogenesis and microcirculation in this model, thereby allowing the quantitative description of the neo-vascular network development while avoiding a complicated technical setup. This method can serve as a useful tool for the assessment of novel vessel-targeted therapies against MPM. We then applied this newly established model so as to elucidate the underlying mechanisms of PDT-induced extravasation of macromolecular compounds across the endothelial barrier in tumors and surrounding normal tissue. We found that low-dose PDT selectively enhanced the uptake of macromolecular compounds in human mesothelioma xenografts compared to surrounding normal tissue. Interestingly, this increase of effective permeability of tumor vasculature was not related to the inflammatory stimuli generated by PDT such as the mobilization of leucocytes and their adhesion and penetration of the injured vessel wall. We then used the model for optimizing the drug-light conditions of low- dose PDT in order to obtain maximal leakage of the macromolecular compounds in the tumor with minimal uptake in normal surrounding tissue and we were able to identify such a therapeutic window. With these optimized PDT treatment conditions, we assessed the therapeutic effect of this new treatment concept in vivo by measuring tumor growth rates on subcutaneously grown mesothelioma xenografts in nude mice after low-dose PDT of the tumors following systemically administered liposomal (macromolecular) cisplatin, a cytostatic compound commonly used in clinical practice. We were able to demonstrate that low-dose PDT with optimized drug-light conditions combined with systemic chemotherapy indeed resulted in a reduction in tumor growth compared to chemotherapy or PDT alone. In conclusion, our work demonstrates that low-dose PDT may selectively enhance the uptake of macromolecular cytostatic drugs in superficially growing tumors such as mesotheliomas and opens new perspectives for the treatment of these diseases. - Les effets cytotoxiques de la thérapie photodynamique (PDT) sur le mésothéliome pleural malin (MPM) n'ont pas apporté de bénéfice clinique significatif. Toutefois, une application innovante non cytotoxique de la PDT serait la bienvenue en supplément des chimiothérapies pour améliorer le contrôle local de la tumeur. Le prétraitement des néovaisseaux tumoraux par une PDT à bas régime, qui améliorerait la distribution d'une chimiothérapie administrée par voie systémique de façon concomitante, a attiré une attention particulière pour de futures applications cliniques. Toutefois, les mécanismes impliqués dans cet événement et les implications thérapeutiques de ces changements physiopathologiques restent non résolus. Dans cette thèse, nous avons observé en premier que l'angiogenèse et la microcirculation dans les xénogreffes de mésothéliomes humains peuvent être observées et analysées in vivo par microscopie intravitale. Le nouveau système de score appliqué pour l'évaluation de l'angiogenèse et de la microcirculation tumorale dans cette étude est une méthode simple, reproductible et fiable servant à décrire de manière quantitative le réseau néo-vasculaire en développement, tout en évitant d'utiliser une installation technique compliquée. Ce modèle sert de nouvel outil pour l'évaluation des thérapies anti-vasculaires dirigées contre le MPM. Le modèle animal nouvellement établi a alors été utilisé pour élucider les mécanismes sous-jacents de Γ extravasation d'agents macromoléculaires induite par PDT dans les vaisseaux tumoraux et normaux. Nous avons trouvé que la PDT à fable dose améliore la distribution ciblée de drogues macromoléculaires dans des greffes de mésothéliome humain, de manière sélective pour la tumeur. La perméabilité vasculaire tumorale n'est pas influencée par les stimuli inflammatoires générés par la PDT, ce qui joue un rôle important dans la sélectivité de notre photodynamic drug delivery. Ensuite, nous avons recherché la fenêtre thérapeutique optimale de la PDT pour obtenir une accumulation sélective du colorant macromoléculaire dans le tissu tumoral ainsi qu'une efficacité de la PDT combinée avec une chimiothérapie macromoléculaire sur la croissance tumorale. Nous avons démontré que la PDT à faible dose combinée avec une administration systémique de cisplatine liposomale mène à un ralentissement de la croissance tumorale dans notre modèle de mésothéliome malin humain. En conclusion, l'utilisation de la PDT comme prétraitement pour améliorer sélectivement la distribution d'agents thérapeutiques dans des tumeurs poussant superficiellement est prometteuse. Cette observation fourni une preuve du concept remarquable et garanti la suite des investigations, éventuellement ayant pour but de développer de nouveaux concepts de thérapie pour les patients atteints de mésothéliome. Une PDT intra cavitaire à faible dose après pleuro- pneumonectomie pourrait améliorer la pénétration des agents cytostatiques administrés de façon concomitante par voie systémique dans les îlots tumoraux résiduels, et ainsi améliorer le contrôle local.
Resumo:
Les protestes socials esdevingudes en nombrosos països durant els últims tres anys –des de Tunísia i l’anomenada “Primavera àrab” fins a les recents mobilitzacions a Turquia o Brasil– han fet aflorar un debat sobre la possible dimensió global i transestatal de totes elles. El present article pretén realitzar una aproximació descriptiva i analítica a aquest intens cicle de protestes, reflexionant sobre les diferències i similituds existents entre elles, el paper que Internet i les xarxes socials han tingut en el curs de les diferents mobilitzacions o, entre altres aspectes, el repertori d’accions que han emprat. Més enllà d’aquests trets compartits o no, l’article mira d’emfasitzar la importància d’entendre aquest cicle de mobilitzacions com un procés de repolitització social que combina les contradiccions i conflictes locals de cada context en particular amb l’aparent existència d’una demanda global per major democratització política, regeneració institucional, justícia social i reapropiació d’allò comú.
Resumo:
Eighteen patients with acetabular fractures, with a mean age of 76 years, were treated with cable fixation and acute total hip arthroplasty. Nine were T-shaped fractures, 4 associated transverse and posterior wall, 2 transverse, 2 posterior column and posterior wall, and 1 anterior and posterior hemitransverse fractures. One patient experienced 3 episodes of hip dislocation within 10 months after surgery. All the others had a good outcome at a mean follow-up time of 36 months. Radiographic assessment showed healing of the fracture and a satisfactory alignment of the cup without loosening. This option provides good primary fixation, stabilizes complex acetabular fractures in elderly patients, and permits early postoperative mobilization.
Resumo:
The measurement of fat balance (fat input minus fat output) involves the accurate estimation of both metabolizable fat intake and total fat oxidation. This is possible mostly under laboratory conditions and not yet in free-living conditions. In the latter situation, net fat retention/mobilization can be estimated based on precise and accurate sequential body composition measurements. In case of positive balance, lipids stored in adipose tissue can originate from dietary (exogenous) lipids or from nonlipid precursors, mainly from carbohydrates (CHOs) but also from ethanol, through a process known as de novo lipogenesis (DNL). Basic equations are provided in this review to facilitate the interpretation of the different subcomponents of fat balance (endogenous vs exogenous) under different nutritional circumstances. One difficulty is methodological: total DNL is difficult to measure quantitatively in man; for example, indirect calorimetry only tracks net DNL, not total DNL. Although the numerous factors (mostly exogenous) influencing DNL have been studied, in particular the effect of CHO overfeeding, there is little information on the rate of DNL in habitual conditions of life, that is, large day-to-day fluctuations of CHO intakes, different types of CHO ingested with different glycemic indexes, alcohol combined with excess CHO intakes, etc. Three issues, which are still controversial today, will be addressed: (1) Is the increase of fat mass induced by CHO overfeeding explained by DNL only, or by decreased endogenous fat oxidation, or both? (2) Is DNL different in overweight and obese individuals as compared to their lean counterparts? (3) Does DNL occur both in the liver and in adipose tissue? Recent studies have demonstrated that acute CHO overfeeding influences adipose tissue lipogenic gene expression and that CHO may stimulate DNL in skeletal muscles, at least in vitro. The role of DNL and its importance in health and disease remain to be further clarified, in particular the putative effect of DNL on the control of energy intake and energy expenditure, as well as the occurrence of DNL in other tissues (such as in myocytes) in addition to hepatocytes and adipocytes.