993 resultados para Mixed-layer salinity
Resumo:
A multiproxy data set of an AMS radiocarbon dated 46 cm long sediment core from the continental margin off western Svalbard reveals multidecadal climatic variability during the past two millennia. Investigation of planktic and benthic stable isotopes, planktic foraminiferal fauna, and lithogenic parameters aims to unveil the Atlantic Water advection to the eastern Fram Strait by intensity, temperatures, and salinities. Atlantic Water has been continuously present at the site over the last 2,000 years. Superimposed on the increase in sea ice/icebergs, a strengthened intensity of Atlantic Water inflow and seasonal ice-free conditions were detected at ~ 1000 to 1200 AD, during the well-known Medieval Climate Anomaly (MCA). However, temperatures of the MCA never exceeded those of the 20th century. Since ~ 1400 AD significantly higher portions of ice rafted debris and high planktic foraminifer fluxes suggest that the site was located in the region of a seasonal highly fluctuating sea ice margin. A sharp reduction in planktic foraminifer fluxes around 800 AD and after 1730 AD indicates cool summer conditions with major influence of sea ice/icebergs. High amounts of the subpolar planktic foraminifer species Turborotalia quinqueloba in size fraction 150-250 µm indicate strengthened Atlantic Water inflow to the eastern Fram Strait already after ~ 1860 AD. Nevertheless surface conditions stayed cold well into the 20th century indicated by low planktic foraminiferal fluxes. Most likely at the beginning of the 20th century, cold conditions of the terminating Little Ice Age period persisted at the surface whereas warm and saline Atlantic Water already strengthened, hereby subsiding below the cold upper mixed layer. Surface sediments with high abundances of subpolar planktic foraminifers indicate a strong inflow of Atlantic Water providing seasonal ice-free conditions in the eastern Fram Strait during the last few decades.
Resumo:
One hundred surface sediment samples of the Arabian Sea (Indian Ocean) were investigated and relative abundances of coccoliths were compared to mean annual gradients of temperature, salinity, chlorophyll, PO4 and mixed layer depth. Total coccolith concentrations ranged from 42*10**6/g sediment in coastal areas to more than 19000*10**6/g sediment in oceanic regions. The general distribution does not seem to be dependent on coccolithophore productivity in surface waters alone, but also on the diluting input of terrigenous material. A total of 27 taxa were identified. The main species dominating the assemblages were Gephyrocapsa oceanica, Emiliania huxleyi and Florisphaera profunda with a combined average abundance of more than 70%. Several species and species groups reflect with their distribution the environmental parameters of the overlying water masses and may be successfully used to improve palaeoclimatic reconstructions, e.g. (a) F. profunda exhibits a high similarity or even positive correlation to the mean annual mixed layer depth, (b) calciosolenids can be described as coastal or shelf species. While temperature and salinity gradients do not seem to be crucial for coccolithophores in this region, the mean mixed layer depth as well as the PO4 concentration (representative for total nutrient availability) may control in part the coccolithophore assemblages. According to the results of a cluster analysis and the distribution pattern of all species, it was possible to differentiate three main coccolithophore assemblages. A G. oceanica dominated assemblage mainly occurs in the northern part of the study area and can be described as 'high nutrient assemblage'. The second assemblage, dominated by F. profunda, may be typical for oligotrophic and stable conditions in open ocean waters. A third assemblage, with high amounts of 'coastal species', characterises coastal conditions on the shelves.
Resumo:
We present measurements of pCO2, O2 concentration, biological oxygen saturation (Delta O2/Ar) and N2 saturation (Delta N2) in Southern Ocean surface waters during austral summer, 2010-2011. Phytoplankton biomass varied strongly across distinct hydrographic zones, with high chlorophyll a (Chla) concentrations in regions of frontal mixing and sea-ice melt. pCO2 and Delta O2 /Ar exhibited large spatial gradients (range 90 to 450 µatm and -10 to 60%, respectively) and co-varied strongly with Chla. However, the ratio of biological O2 accumulation to dissolved inorganic carbon (DIC) drawdown was significantly lower than expected from photosynthetic stoichiometry, reflecting the differential time-scales of O2 and CO2 air-sea equilibration. We measured significant oceanic CO2 uptake, with a mean air-sea flux (~ -20 mmol m-2 d-1) that significantly exceeded regional climatological values. N2 was mostly supersaturated in surface waters (mean Delta N2 of +2.5 %), while physical processes resulted in both supersaturation and undersaturation of mixed layer O2 (mean Delta O2phys = 2.1 %). Box model calculations were able to reproduce much of the spatial variability of Delta N2 and Delta O2phys along the cruise track, demonstrating significant effects of air-sea exchange processes (e.g. atmospheric pressure changes and bubble injection) and mixed layer entrainment on surface gas disequilibria. Net community production (NCP) derived from entrainment-corrected surface Delta O2 /Ar data, ranged from ~ -40 to > 300 mmol O2 m-2 d-1 and showed good coherence with independent NCP estimates based on seasonal mixed layer DIC deficits. Elevated NCP was observed in hydrographic frontal zones and regions of sea-ice melt with shallow mixed layer depths, reflecting the importance of mixing in controlling surface water light and nutrient availability.
Resumo:
The occurrence of mesoscale eddies that develop suboxic environments at shallow depth (about 40-100 m) has recently been reported for the eastern tropical North Atlantic (ETNA). Their hydrographic structure suggests that the water mass inside the eddy is well isolated from ambient waters supporting the development of severe near-surface oxygen deficits. So far, hydrographic and biogeochemical characterization of these eddies was limited to a few autonomous surveys, with the use of moorings, under water gliders and profiling floats. In this study we present results from the first dedicated biogeochemical survey of one of these eddies conducted in March 2014 near the Cape Verde Ocean Observatory (CVOO). During the survey the eddy core showed oxygen concentrations as low as 5 µmol kg-1 with a pH of around 7.6 at approximately 100 m depth. Correspondingly, the aragonite saturation level dropped to 1 at the same depth, thereby creating unfavorable conditions for calcifying organisms. To our knowledge, such enhanced acidity within near-surface waters has never been reported before for the open Atlantic Ocean. Vertical distributions of particulate organic matter and dissolved organic matter (POM and DOM), generally showed elevated concentrations in the surface mixed layer (0-70 m), with DOM also accumulating beneath the oxygen minimum. With the use of reference data from the upwelling region where these eddies are formed, the oxygen utilization rate was calculated by determining oxygen consumption through the remineralization of organic matter. Inside the core, we found these rates were almost 1 order of magnitude higher (apparent oxygen utilization rate (aOUR); 0.26 µmol kg-1 day-1) than typical values for the open North Atlantic. Computed downward fluxes for particulate organic carbon (POC), were around 0.19 to 0.23 g C m-2 day-1 at 100 m depth, clearly exceeding fluxes typical for an oligotrophic open-ocean setting. The observations support the view that the oxygen-depleted eddies can be viewed as isolated, westwards propagating upwelling systems of their own, thereby represent re-occurring alien biogeochemical environments in the ETNA.
Resumo:
The physical and biological carbon pumps in the different hydrographic and biogeochemical regimes of the Atlantic Sector of the Southern Ocean are controlled by a series of coupled physical, chemical and biological processes and a project named Eddy-Pump was designed to study them. The Eddy Pump field campaign was carried out during RV Polarstern Cruise ANT-XXVIII/3 between January and March 2012. Particular emphasis was laid on the differences which occur along the axis of the Antarctic Circumpolar Current (ACC) with its associated mesoscale eddy field. The study sites were selected in order to represent (1) the central ACC with its regular separation in different frontal jets, investigated by a meridional transect along 10°E; (2) a large-scale bloom west of the Mid-Atlantic Ridge which lasted several months with conspicuous chlorophyll-poor waters to its immediate east studied by a three-dimensional mesoscale survey centred at 12°40'W; and (3) the Georgia Basin north of the island of South Georgia, which regularly features an extended and dense phytoplankton bloom, was investigated by a mesoscale survey centred at 38°12'W. While Eddy-Pump represents an interdisciplinary project by design, we here focus on describing the variable physical environment within which the different biogeochemical regimes developed. For describing the physical environment we use measurements of temperature, salinity and density, of mixed-layer turbulence parameters, of dynamic heights and horizontal current vectors, and of flow trajectories obtained from surface drifters and submerged floats. This serves as background information for the analyses of biological and chemical processes and of biogeochemical fluxes addressed by other papers in this issue. The section along 10°E between 44°S and 53°S showed a classical ACC structure with well-known hydrographic fronts, the Subantarctic Front (SAF) at 46.5°S, the Antarctic Polar Front (APF) split in two, at 49.25°S and 50.5°S, and the Southern Polar Front (SPF) at 52.5°S. Each front was associated with strong eastward flows. The West Mid-Atlantic Ridge Survey showed a weak and poorly resolved meander structure between the APF and the SPF. During the first eight days of the survey the oceanographic conditions at the Central Station at 12°40'W remained reasonably constant. However after that, conditions became more variable in the thermocline with conspicuous temperature inversions and interleavings and also a decrease in temperature in the surface layer. At the very end of the period of observation the conditions in the thermocline returned to being similar to those observed during the early part of the period with however the mixed layer temperature raised. The period of enhanced thermohaline variability was accompanied by increased currents. The Georgia Basin Survey showed a very strong zonal jet at its northern edge which connects to a large cyclonic meander that itself joins an anticyclonic eddy in the southeastern quadrant. The water mass contrasts in this survey were stronger than in the West Mid-Atlantic Ridge Survey, but similar to those met along 10°E with the exception that the warm and saline surface water typical of the northern side of the SAF was not covered by the Georgia Basin Survey. Mixed layers found during Eddy-Pump were typically deep, but varied between the three survey areas; the mean depths and standard variations of the mixed layer along the 10°E were 77.2±24.7 m, at the West Mid-Atlantic Ridge 66.7±17.7 m, and in the Georgia Basin 36.8±10.7 m.
Resumo:
Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.
Resumo:
Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.
Resumo:
In the north Atlantic subtropical gyre, the oceanic vertical structure of density is characterized by a region of rapid increase with depth. This layer is called the permanent pycnocline. The permanent pycnocline is found below a surface mode water ,which are ventilated every winter when penetrated locally by the mixed layer. Assessing the structure and variability of the permanent pycnocline is of a major interest in the understanding of the climate system because the pycnocline layer delimits important heat and anthropogenic reservoir. Moreover, the heat content structure translate into changes in the large scale stratification feature, such as the permanent pycnocline. We developed a new objective algorithm for the characterization of the large scale structure of the permanent pycnocline (OAC-P). Argo data have been used with OAC-P to provide a detailed description of the mean structure of the North-Atlantic subtropical pycnocline (e.g.: depth, thickness, temperature, salinity, density, potential vorticity). Results reveal a surprisingly complex structure with inhomogeneous properties. While the classical bowl shape of the pycnocline depth is captured, much more complex pycnocline structure emerges at the regional scale. In the southern recirculation gyre of the Gulf Stream Extension, the pycnocline is deep, thick, the maximum of stratification is found in the middle on the layer and follow an isopycnal surface. But local processes influence and modify this textbook description and the pycnocline is characterized by a vertically asymmetric structure and gradients in thermohaline properties. T/S distribution along the permanent pycnocline depth is complex and reveals a diversity of water masses resulting from mixing of different source waters. We will present the observed mean structure of the North-Atlantic subtropical permanent pycnocline and relate it to physical processes that constraint it.
Resumo:
Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies.
Resumo:
The goal of this thesis was the study of an optimal vertical mixing parameterization scheme in a mesoscale dominated field characterized from a strong vorticity and the presence of a layer of colder, less saline water at about 100 m depth (Atlantic Waters); in these conditions we compared six different experiments, that differ by the turbulent closure schemes, the presence or not of an enhanced diffusion parameterization and the presence or not of a double diffusion mixing parameterization. To evaluate the performance of the experiments and the model we compared the simulations with the ARGO observations of temperature and salinity available in our domain, in our period of interest. The conclusions were the following: • the increase of the resolution gives better results in terms of temperature in all the considered cases, and in terms of salinity. • The comparisons between the Pacanovski-Philander and the TKE turbulent closure schemes don’t show significant differences when the simulations are compared to the observations. • The removing of the enhanced diffusion parameterization in presence of the TKE turbulent closure submodel doesn’t give positive results, and show limitations in the resolving of gravitational instabilities near the surface • The k-ϵ turbulent closure model utilized in all the GLS experiments, is the best performing closure model among the three considered, with positive results in all the salinity comparison with the in situ observation and in most of the temperature comparisons. • The double mixing parameterization utilized in the k-ϵ closure submodel improves the results of the experiments improving both the temperature and salinity in comparison with the ARGO data.
Resumo:
Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25-2.5 mu m were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25-0.45 mu m in diameter, were in general dominated by deposition in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. Transfer velocities within this particle size range were observed to increase linearly with increasing friction velocity and increasing particle diameter. In the diameter range 0.5-2.5 mu m, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net upward fluxes were observed. However, in wind sectors associated with higher anthropogenic influence, deposition fluxes dominated. The net upward fluxes were interpreted as a result of primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The net emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and were best correlated with horizontal wind speed according to the equation log(10)F = 0.48.U + 2.21 where F is the net emission number flux of 0.5-2.5 mu m particles [m(-2) s(-1)] and U is the horizontal wind speed [ms(-1)] at the top of the tower.
Resumo:
Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system. During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. The particle transfer velocity v(t) increased with increasing friction velocity and the relation is described by the equation v(t) = 2.4x10(-3)xu(*) where u(*) is the friction velocity. Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, the number source of primary aerosol particles within the footprint area of the measurements was small, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm. This is an indication that the contribution of primary biogenic aerosol particles to the aerosol population in the Amazon boundary layer may be low in terms of number concentrations. However, the possibility of horizontal variations in primary aerosol emission over the Amazon rain forest cannot be ruled out.