861 resultados para Microstructure of titanium
Resumo:
Orthodontic mini-implants are used in clinical practice to provide efficient and aesthetically-pleasing anchorage. AIM: To evaluate the hardness Vickers hardness and chemical composition of mini-implant titanium alloys from five commercial brands. METHODS: Thirty self-drilling mini-implants, six each from the following commercial brands, were used: Neodent NEO, Morelli MOR, Sin SIN, Conexão CON, and Rocky Mountain RMO. The hardness and chemical composition of the titanium alloys were performed by the Vickers hardness test and energy dispersive X-ray spectroscopy, respectively. RESULTS: Vickers hardness was significantly higher in SIN implants than in NEO, MOR, and CON implants. Similarly, VH was significantly higher in RMO implants than in MOR and NEO ones. In addition, VH was higher in CON implants than in NEO ones. There were no significant differences in the proportions of titanium and aluminum in the mini-implant alloy of the five commercial brands. Conversely, the proportion of vanadium differed significantly between CON and MOR/NEO implants. CONCLUSIONS: Mini-implants of different brands presented distinct properties of hardness and composition of the alloy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim To evaluate the influence of yellow bone marrow on osseointegration of titanium oral implants using a long bone model.Material and methodsThe two tibiae of eight sheep were used as experimental sites. Two osteotomies for implant installation were prepared in each tibia. At the control sites, no further treatments were performed while, at the test sites, bone marrow was removed from the osteotomy site with a curette to an extent that exceeded the implant dimensions. As a result, the apical portion of the implants at the control sites was in contact with bone marrow while, at the test sites, it was in contact with the blood clot. After 2months, the same procedures were performed in the contralateral side. After another month, the animal was sacrificed. Ground sections were obtained for histological analysis.ResultsAfter 1month of healing, no differences between test and control sites were found in the apical extension of osseointegration and the percentage of new bone-to-implant contact. However, after 3months of healing, a higher percentage of new bone-to-implant contact was found at the test compared to the control sites in the marrow compartment. The apical extension of osseointegration, however, was similar to that found at the 1-month healing period both for test and control sites.ConclusionsOsseointegration appeared to be favored by the presence of a blood clot when compared to the presence of yellow fatty bone marrow. Moreover, the contact with cortical bone appeared to be a prerequisite for the osseointegration process in the long bone model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Processo FAPESP: 2012/24545-3
Resumo:
Several alloys have been used for prosthodontics restorations in the last years. These alloys have a number of metals that include gold, palladium, silver, nickel, cobalt, chromium and titanium and they are used in oral cavity undergo several corrosion. Corrosion can lead to poor esthetics, compromise of physical properties, or increased biological irritation. The objective of this study was evaluated corrosion resistance of two alloys Ni-Cr and Ni-Cr-Ti in three types of mouthwashes with different active ingredients: 0.5g/l cetylpyridinium chloride + 0.05% sodium fluoride, 0.05% sodium fluoride + 0.03% triclosan (with fluor) and 0.12% chlorohexidine digluconate. The potentiodynamic curves were performed by means of an EG&G PAR 283 potentiostat/galvanostat. The counter electrode was a platinum wire and reference electrode was an Ag/AgCl, KCl saturated. Before each experiment, working electrodes were mechanically polished with 600 and 1200 grade papers, rinsed with distilled water and dried in air. All experiments were carried out at 37.0oC in conventional three-compartment double wall glass cell containing mouthwashes. The microstructures of two alloys were observed in optical microscopy. Analysis of curves showed that Ni-Cr alloy was less reactive in the presence of 0.12% chlorohexidine digluconate while Ni-Cr-Ti alloy was more sensitive for others two types of mouthwashes (0.5g/l cetylpyridinium chloride + 0.05% sodium fluoride and 0.05% sodium fluoride + 0.03% triclosan). This occurred probably due presence of titanium in this alloy. Microstructural analysis reveals the presence of dendritic and eutectic microstructures for NiCr and Ni-Cr-Ti, respectively.
Resumo:
Calvaria grafts provide good bone quantity for the reconstruction of the atrophic maxilla, and have lower morbidity and resorption rates when compared to iliac crest. The aim of this paper is to present the technique for obtaining a graft of the skull. Initially, the depth of the osteotomy is determined by a manually conducted bur, which establishes the limits of the structures of the skull (outer table, diploe and inner table), making the removal of bone blocks easier and safer. Thus, osteotomies of the blocks are made with greater security, avoiding the complications inherent to surgical technique. The case that will be presented it is from a male patient of 65 years who refused to submit to the iliac crest graft, opting for the calvaria, despite being bald, that is a contraindication for this treatment modality. A delicate suture associated with placement of titanium mesh to maintain the conformation of the patient's skull in the region of the bone defect, created after removal of the graft, provided a good cosmetic result at the donor site. The use of titanium mesh for re-anatomization of bone defects created in the grafts is well indicated for bald patients.
Resumo:
Purpose: Ti-Ta alloys have high potential for dental application due to a good balance between high strength and low modulus. Absence of primary anchoring may occur when dental implants are installed immediately after tooth extraction. Tranexamic acid (TEA) is used to reduce fibrin degradation and can prevent early blood clot breakdown. The aim of this study was to evaluate the biocompatibility of Ti-30Ta implants associated or not with tranexamic acid and installed with compromised primary stability. Methods and materials: Fabricated were 20 implants of titanium ASTM F67 (Grade 4) and 20 implants of Ti-30Ta alloy with dimensions of 2.1 mm × 2.8 mm Ø. They were divided (n = 10) into Group I (Ti machined), Group II (Ti machined/tranexamic acid), Group III (Ti-30Ta alloy) and Group IV (Ti-30Ta/tranexamic acid) and were implanted in tibia (defects with 2.5 mm × 3.2 mm Ø) of 40 male rats (250 g). The surgical sites were rinsed with 5% tranexamic acid solution in Groups II and IV. The animals were euthanized at 45 days postoperative. The pieces were processed in methyl methacrylate (Stevenel's blue/Alizarin red). The percentage of peri-implant tissue repair was analyzed via images obtained by an optical microscope coupled to a digital camera using Leica software and Adobe Photoshop QWin. Data were analyzed statistically with a significance level of 5%. Results: Histomorphometric results showed 97.16% of bone-implant contact for group IV, 89.78% of bone contact for group III, 70.89% for group II and 61.59% of bone contact for group I. The statistical analyses demonstrated significant differences (P < 0.05) among group I and other groups. Conclusion: The results suggest that (a) Ti-30Ta promoted an increase of bone healing and apposition around implant; (b) tranexamic acid favored the stabilization of blood clot and bone formation.