886 resultados para Microstructural Modification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructural evolution, grain growth and densification for the varistor systems ZnO-Bi2O3 (ZB), ZnO-Bi2O3-Sb2O3 (ZBS), ZnO-Bi2O3-Sb2O3-MnO-Cr 2O3-CoO (ZBSCCM) were studied using constant heating rate sintering, scanning electron microscopy (SEM) and in situ phase formation measurement by high temperature X-ray diffraction (HT-XRD). The results showed that the densifying process is controlled by the formation and decomposition of the Zn2Bi3Sb3O14 pyrochlore (PY) phase for the ZBS and ZBSCCM systems. The addition of transition metals (ZBSCCM system) alters the formation and decomposition reaction temperatures of the pyrochlore phase and the morphology of the Zn7Sb2O12 spinel phase. Thus, the spinel grains act as inclusions and decrease the ZnO grain growth rate. Spinel grain growth kinetics in the ZBSCCM system showed an n value of 2.6, and SEM and HT-XRD results indicate two grain growth mechanisms based on coalescence and Ostwald ripening. © 1996 Chapman & Hall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co3O4 can be used as electrocatalyst for oxygen evolution reaction. The macro and microstructure of the oxide, obtained by compacting and sintering lithium-doped Co3O4 powder in atmosphere of dry air and in conditions of controlled temperature and time was analyzed by metallographic techniques. The porous material was characterized by XRD, SEM and EDS combined techniques. For working temperatures up to 1200°C, the pellet was consituted of particles with varying sizes over a wide range of particle size and, at higher temperatures CoO is formed and polymorphic transformation was observed. The materials were also characterized electrochemically in alkaline media by open circuit potential and potentiodynamic I/E measurements. The results were compared to those previously prepared by others by thermal deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new process for the surface modification of hydrogen storage intermetallic particles used as anode material in secondary batteries is proposed in this article. The copper oxide particles coverage obtained by the sol-gel method is proposed to produce, under operational conditions of a Ni-MH battery, a metallic framework that tolerates the volume changes in charge/discharge cycles and does not inhibit the hydrogen absorption. Furthermore it was noticed an enhancement on the discharge capacity of the electrode material that can be related to a new hydrogen storage phase or to an inhibition of the surface oxidation promoted by the film coverage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commercial pure titanium (cp-Ti) is currently being used with great success in dental implants. In this work we investigate how the cp-Ti implants can be improved by modifying the metal surface morphology, on which a synthetic material with properties similar to that of the inorganic part of the bone, is deposited to facilitate the bone/implant bonding. This synthetic material is the hydroxyapatite, HA, a calcium-phosphate ceramic. The surface modification consists in the application of a titanium oxide (TiO2) layer, using the thermal aspersion - plasma spray technique, with posterior deposition of HA, using the biomimetic method. The X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques have been used for characterizing phases, microstructures and morphologies of the coatings. The TiO2 deposit shows a mixture of anatase, rutilo and TiO2-x phases, and a porous and laminar morphology, which facilitate the HA deposition. After the thermal treatment, the previously amorphous structured HA coating, shows a porous homogeneous morphology with particle size of about 2-2.5 μm, with crystallinity and composition similar to that of the biological HA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead zirconate titanate (PZT) solutions were prepared using a polymeric precursor method, Zr n-propoxide and Ti i-propoxide were used as starting materials with ethylene glycol and water as solvents. The PZT solution was spin-coated on Pt/Ti/SiO2/Si substrates, baked on a hot plate, and finally heat-treated in a tube furnace between 400 and 800°C. The surface morphology and grain size of the films were characterized by atomic force microscopy (AFM), using a tapping mode with amplitude modulation. The films, thermal annealed at temperatures higher than 500°C, exhibited a dense microstructure, without noticeable cracks or voids. Electrical properties were investigated as a function of composition and annealing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study of the microstructural and electrical properties of the yttria-stabilized zirconia/nickel oxide (YSZ/NiO) composite was performed. This material is the precursor to the solid oxide fuel cell anode cermet YSZ/Ni. A liquid mixture technique was developed to produce the YSZ/NiO composite to fabricate high-performance SOFC anodes. This technique resulted in fine and homogeneous powders and specimens with high electrical conductivity. The combined results showed that this technique is suitable for the production of the anode cermet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membrane fusion is an essential step in the entry of enveloped viruses into their host cells triggered by conformational changes in viral glycoproteins. We have demonstrated previously that modification of vesicular stomatitis virus (VSV) with diethylpyrocarbonate (DEPC) abolished conformational changes on VSV glycoprotein and the fusion reaction catalyzed by the virus. In the present study, we evaluated whether treatment with DEPC was able to inactivate the virus. Infectivity and viral replication were abolished by viral treatment with 0.5 mM DEPC. Mortality profile and inflammatory response in the central nervous system indicated that G protein modification with DEPC eliminates the ability of the virus to cause disease. In addition, DEPC treatment did not alter the conformational integrity of surface proteins of inactivated VSV as demonstrated by transmission electron microscopy and competitive ELISA. Taken together, our results suggest a potential use of histidine (His) modification to the development of a new process of viral inactivation based on fusion inhibition. © 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article evaluates space closure mechanics efficiency in an extraction case where maximum anchorage was a requirement. The Segmented Arch Technique (SAT) was utilized as an anchorage control strategy to obtain maximum anterior retraction and, in consequence, significant facial profile change. A 20-year-10-month old woman needed severe labial and profile changes. The patient had four premolars extracted and SAT with type A mechanics [1] (Marcotte [2] activation protocol) was applied. The results showed significant reduction in labial protrusion and incisal angulation with effective anchorage control. The results were compared to others available in the literature derived from different techniques, where anterior retraction was also accomplished with maximum anchorage [3-7]. In conclusion, the SAT with type A mechanics has been shown to be another treatment option when significant changes in the soft-tissue profile are needed in extraction cases. © 2008. CEO. Published by Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the present study was to evaluate, using a biomechanical test, the force needed to remove implants with surface modification by laser (Nd:YAG) in comparison with implants with machined surfaces. Twenty-four rabbits received one implant with each surface treatment in the tibia, machined surface (MS) and laser-modified surface (LMS). After 4, 8 and 12 weeks of healing, the removal torque was measured by a torque gauge. The surfaces studied were analyzed according to their topography, chemical composition and roughness. The average removal torque in each period was 23.28, 24.0 and 33.85 Ncm for MS, and 33.0, 39.87 and 54.57 Ncm for LMS, respectively. The difference between the surfaces in all periods of evaluation was statistically significant (p < 0.05). Surface characterization showed that a deep and regular topography was provided by the laser conditioning, with a great quantity of oxygen ions when compared to the MS. The surface micro-topography analysis showed a statistical difference (p < 0.01) between the roughness of the LMS (R a = 1.38 ± 0.23 μm) when compared to that of the MS (R a = 0.33 ± 0.06 μm). Based on these results, it was possible to conclude that the LMS implants' physical-chemical properties increased bone-implant interaction when compared to the MS implants. © 2009 Sociedade Brasileira de Pesquisa Odontológica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal transformations on microalloyed steels can produce multiphase microstructures with different amounts of ferrite, martensite, bainite and retained austenite. These different phases, with distinct morphologies, are determinant of the mechanical behavior of the steel and can, for instance, affect the crack path or promote crack shielding, thus resulting in changes on its propagation rate under cyclic loading. The aim of the present work is to evaluate the effects of microstructure on the tensile strength and fatigue crack growth (FCG) behaviour of a 0.08%C-1,5%Mn (wt. pct.) microalloyed steel, recently developed by a Brazilian steel maker under the designation of RD480. This steel is being considered as a promising alternative to replace low carbon steel in wheel components for the automotive industry. Various microstructural conditions were obtained by means of heat treatments followed by water quench, in which the material samples were kept at the temperatures of 800, 950 and 1200 °C. In order to describe the FCG behavior, two models were tested: the conventional Paris equation and a new exponential equation developed for materials showing non-linear FCG behavior. The results allowed correlating the tensile properties and crack growth resistance to the microstructural features. It is also shown that the Region II FCG curves of the dual and multiphase microstructural conditions present crack growth transitions that are better modeled by dividing them in two parts. The fracture surfaces of the fatigued samples were observed via scanning electron microscopy in order to reveal the fracture mechanisms presented by the various material conditions. © 2010 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High chromium content is responsible for the formation of a protective passive surface layer on austenitic stainless steels (ASS). Due to their larger amounts of chromium, superaustenitic stainless steels (SASS) can be chosen for applications with higher corrosion resistance requirements. However, both of them present low hardness and wear resistance that has limited their use for mechanical parts fabrication. Plasma nitriding is a very effective surface treatment for producing harder and wear resistant surface layers on these steel grades, without harming their corrosion resistance if low processing temperatures are employed. In this work UNS S31600 and UNS S31254 SASS samples were plasma nitrided in temperatures from 400 °C to 500 °C for 5 h with 80% H 2-20% N2 atmosphere at 600Pa. Nitrided layers were analyzed by optical (OM) and transmission electron microscopy (TEM), x-ray diffraction (XRD), and Vickers microhardness testing. Observations made by optical microscopy showed that N-rich layers were uniform but their thicknesses increased with higher nitriding temperatures. XRD analyses showed that lower temperature layers are mainly composed by expanded austenite, a metastable nitrogen supersaturated phase with excellent corrosion and tribological properties. Samples nitrided at 400 °C produced a 5 μm thick expanded austenite layer. The nitrided layer reached 25 lm in specimens treated at 500 °C. There are indications that other phases are formed during higher temperature nitriding but XRD analysis was not able to determine that phases are iron and/or chromium nitrides, which are responsible for increasing hardness from 850 up to 1100 HV. In fact, observations made by TEM have indicated that formation of fine nitrides, virtually not identified by XRD technique, can begin at lower temperatures and their growth is affected by both thermodynamical and kinetics reasons. Copyright © 2012 by ASTM International.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, air dielectric barrier discharge (DBD) operating at the line frequency (60 Hz) or at frequency of 17 kHz was used to improve the wetting properties of polypropylene (PP). The changes in the surface hydrophilicity were investigated by contact angle measurements. The plasma-induced chemical modifications of PP surface were studied by X-ray photoelectron spectroscopy (XPS) and Fourier-transformed infrared spectroscopy (FTIR). The polymer surface morphology and roughness before and after the DBD treatment were analyzed by atomic force microscopy (AFM). To compare the plasma treatment effect at different frequencies the variation of the contact angle is presented as a function of the deposited energy density. The results show that both DBD treatments leaded to formation of water-soluble low molecular weight oxidized material (LMWOM), which agglomerated into small mounts on the surface producing a complex globular structure. However, the 60 Hz DBD process produced higher amount of LMWOM on the PP surface comparing to the 17 kHz plasma treatment with the same energy dose. The hydrophilic LMWOM is weakly bounded to the surface and can be easily removed by polar solvents. After washing the DBD-treated samples in de-ionized water their surface roughness and oxygen content were reduced and the PP partially recovered its original wetting characteristics. This suggested that oxidation also occurred at deeper and more permanent levels of the PP samples. Comparing both DBD processes the 17 kHz treatment was found to be more efficient in introducing oxygen moieties on the surface and also in improving the PP wetting properties. © 2012 Elsevier B.V. All rights reserved.