974 resultados para Microscopy of materials


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The imaging and characterization of single-molecule reaction events is essential to both extending our basic understanding of chemistry and applying this understanding to challenges at the frontiers of technology, for example, in nanoelectronics. Specifically, understanding the behavior of individual molecules can elucidate processes critical to the controlled synthesis of materials for applications in multiple nanoscale technologies. Here, we report the synthesis of an important semiconducting organic molecule through an unprecedented reaction observed with submolecular resolution by scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. Our images reveal a sulfur abstraction and cyclization reaction that converts tetrathienoanthracene precursors into pentacene on the Ni(111) surface. The identity of the final reaction product was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS). This reaction has no known literature analogue, and highlights the power of local-probe techniques for exploring new chemical pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic routes leading to 12 L-phenylalanine based mono- and bipolar derivatives (1-12) and an in-depth study of their structure-property relationship with respect to gelation have been presented. These include monopolar systems such as N-[(benzyloxy)carbonyl]-L-phenylalanine-N-alkylamides and the corresponding bipolar derivatives with flexible and rigid spacers such as with 1,12-diaminododecane and 4,4'-diaminodiphenylmethane, respectively. The two ends of the latter have been functionalized with N-[(benzyloxy)carbonyl]-L-phenylalanine units via amide connection. Another bipolar molecule was synthesized in which the middle portion of the hydrocarbon segment contained polymerizable diacetylene unit. To ascertain the role of the presence of urethane linkages in the gelator molecule protected L-phenylalanine derivatives were also synthesized in which the (benzyloxy)carbonyl group has been replaced with (tert-butyloxy)carbonyl, acetyl, and benzoyl groups, respectively. Upon completion of the synthesis and adequate characterization of the newly described molecules, we examined the aggregation and gelation properties of each of them in a number of solvents and their mixtures. Optical microscopy and electron microscopy further characterized the systems that formed gels. Few representative systems, which showed excellent gelation behavior was, further examined by FT-IR, calorimetric, and powder X-ray diffraction studies. To explain the possible reasons for gelation, the results of molecular modeling and energy-minimization studies were also included. Taken together these results demonstrate the importance of the presence of (benzyloxy)carbonyl unit, urethane and secondary amide linkages, chiral purities of the headgroup and the length of the alkyl chain of the hydrophobic segment as critical determinants toward effective gelation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent observation of n-type conduction in amorphous Ge20Ss_xBix at large bismuth concentrations (x = 11), which otherwise shows p-type conduction, has aroused considerable interest in the international scientific community [1]. The mechanism of such impurity incorporation in a germanium chalcogenide glass is not understood and is a topic of current interest. In our recent publications [2-10] we have brought to light some hitherto unknown and interesting features of bismuth dopants in chalcogen-rich Ge-X (X -- S, Se) glassy compositions. In this communication we present our new results of investigations on vitreous semiconductors Ge20S80 Bi using electron microscopy, electron diffraction of as-prepared and annealed/pressure quenched compositions. Our results provide conclusive support to the formation of composite clusters containing all the three elements, germanium, sulphur and bismuth, which crystallize in simpler stoichiometric compounds Bi2S3 and GeS2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential scanning calorimetry, x-ray diffraction and transmission electron microscopy have been employed to determine the thermal stability and identify the crystalline phases on devitrification of Metglas 2826 MB. The glass crystallizes intoγ-FeNiMo and fcc (FeNi)23B6 with activation energies of 270 and 375 kJ mol−1 respectively. The reactions are primary and polymorphic in nature. The influence of Mo towards crystallization of Fe40Ni40B20 has been to enhance the formation of the fcc (FeNi)23B6 phase in preference to orthorhombic (FeNi)3B phase and to raise the thermal stability of the amorphous state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate the aptitude of supramolecular hydrogel formation using simple bile acid such as lithocholic acid in aqueous solution in the presence of various dimeric or oligomeric amines. By variation of the choice of the amines in such mixtures the gelation properties could be modulated. However, the replacement of lithocholic acid (LCA) by cholic acid or deoxycholic acid resulted in no hydrogel formation. FT-IR studies confirm that the carboxylate and ammonium residues of the two components are involved in the salt (ion-pair) formation. This promotes further assembly of the components reinforced by a continuous hydrogen bonded network leading to gelation. Electron microscopy shows the morphology of the internal organization of gels of two component systems which also depends significantly on the amine part. Variation of the amine component from the simple 1,2-ethanediamine (EDA) to oligomeric amines in such gels of lithocholic acid changes the morphology of the assembly from long one-dimensional nanotubes to three-dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines interact with the carboxylate and hydroxyl moieties through electrostatic forces and hydrogen bonding. From small angle neutron scattering study, it becomes clear that the weak gel from LCA-EDA shows scattering oscillation due to the presence of non-interacting nanotubules while for gels of LCA with oligomeric amines the individual fibers come together to form complex three-dimensional organizations of higher length scale. The rheological properties of this class of two component system provide clear evidence that the flow behavior can be modulated varying the acid-amine ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coefficients of thermal expansion reported by Worlton et al. [6] in the case of zircon are given in Table II along with the present data. Although Oql > or• in both cases, the anisotropy is more marked in the case of DyV04. From Table II, it is clear that the coefficient of volume expansion (,6) is almost the same for both compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of the nanocrystalline tribolayer produced in oxygen free high conductivity copper after sliding against 440C stainless steel was studied. Tests were conducted on a pin-on-disk tribometer at sliding velocities of 0.05 and 1.0 m/s and sliding times of 0.1 to 10,000 s. Subsurface deformation and the growth of the tribolayer as a function of time were studied with the use of transmission electron microscopy and ion induced secondary electron microscopy. A continuous nanocrystalline tribolayer was produced after as little as 10 s of sliding at both sliding velocities. The tribolayer produced by sliding at 0.05 m/s continued to grow at sliding times up to 10,000 s and developed texture. Dynamic recrystallization of the tribolayer at a sliding velocity of 1.0 m/s inhibited the growth of a continuous anocrystalline tribolayer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plastic surfaces are a group of materials used for many purposes. The present study was focused on methods for investigation of surface topography, wearing and cleanability of polyvinyl chloride (PVC) model surfaces and industrial plastic surfaces. Contact profilometry, scanning electron microscopy (SEM) and atomic force microscopy (AFM) are powerful methods for studying the topography of plastic surfaces. Although they have their own limitations, they are together an effective tool providing useful information on surface topography, especially when studying laboratory-made PVC model surfaces with known chemical compositions and structures. All examined laboratory-made PVC plastic surfaces examined in this work could be considered as smooth according to both AFM and profilometer measurements because height differences are in the nanoscale on every surface. Industrial plastic surfaces are a complex group of materials because of their chemical and topographical heterogeneity, but they are nevertheless important reference materials when developing cleaning and wearing methods. According to the results of this study the Soiling and Wearing Drum and the Frick-Taber methods are very useful when simulating three-body wearing of plastic surfaces. Both the investigated wearing methods can be used to compare the wearing of different plastic materials using appropriate evaluation methods of wearing and industrial use. In this study, physical methods were developed and adapted from other fields of material research to cleanability studies. The thesis focuses on the methodology for investigating the cleanability of plastic surfaces under realistic conditions, where surface topography and the effect of wear cleanability were among the major topics. A colorimetric method proved to be suitable for examining the cleanability of the industrial plastic surfaces. The results were utilized to evaluate the relationship between cleanability and the surface properties of plastic surfaces. The devices and methods used in the work can be utilized both in material research and product development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface activity of solution deposited (SD) amorphous films of As2S3 has been investigated. Silver and copper are readily deposited on such films from appropriate aqueous ionic solutions. The metals diffuse into the films upon irradiation with energetic photons. Structure and properties of SD films have been investigated using electron microscopy, optical spectroscopy and differential scanning calorimetry. The amorphous films tend to crystallize upon metal diffusion. The stability of amorphous films, the deposition of metals on their active surfaces and the photo-induced diffusion may all be attributed to the presence or production of charged defects in amorphous chalcogenide films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wear resistance of high chromium iron is well recorded. However, the same is not the case as regards the use of manganese at higher percentages in high chromium irons and its influence on wear behaviour. Hence, this work highlights the slurry wear characteristics of chromium 16–19%) iron following the introduction of manganese at two levels i.e. 5 and 10%. It is known that the wear properties are dictated by the microstructural features. To alter the structure, the cooling rate of casting has been varied by adopting two different types of moulds (i.e. sand and metal) and subsequently subjecting to thermal treatment. The as-cast and heat treated samples are examined for microstructure and then evaluated for hardness and slurry erosion properties. As the manganese content is increased from 5 to 10%, the hardness showed a decrease in value both in the as-cast and heat treated conditions. The slurry erosion loss, expectedly, showed an increase irrespective of the sample condition (i.e. mould type/heat treatment adopted). The findings are corroborated with the microstructural features obtained through optical and scanning electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase relations in the system Ca-Ti-O have been established by equilibration of several samples at 1200 K for prolonged periods and identification of phases in quenched samples by optical and scanning electron microscopy, XRD and EDS. Samples representing 20 compositions in the ternary system were analyzed. There was negligible solid solubility of Ca in the phases along the binary Ti-O, and of Ti in CaO. Four ternary oxides were identified: CaTiO3, Ca4Ti3O10 and Ca3Ti2O7 containing tetravalent titanium, and CaTi2O4 containing trivalent titanium. Tie-lines link calcium titanite (CaTi2O4) with the three calcium titanates (CaTiO3, Ca4Ti3O10 and Ca3Ti2O7), CaO, oxygen excess TiO1+delta and stoichiometric TiO. Tie-lines connect CaTiO3 with TiO2-x, Magneli phases TinO2n-1 (28 >= n >= 4), Ti3O5, Ti2O3 and TiO1+delta. CaO was found to coexist with TiO, and Ti-O solid solutions alpha and beta. The phase diagram is useful for understanding the mechanisms and kinetics of direct calciothermic reduction of TiO2 to metal and electrochemical reduction of TiO2 using graphite anode and molten CaCl2 electrolyte.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis concerns the dynamics of nanoparticle impacts on solid surfaces. These impacts occur, for instance, in space, where micro- and nanometeoroids hit surfaces of planets, moons, and spacecraft. On Earth, materials are bombarded with nanoparticles in cluster ion beam devices, in order to clean or smooth their surfaces, or to analyse their elemental composition. In both cases, the result depends on the combined effects of countless single impacts. However, the dynamics of single impacts must be understood before the overall effects of nanoparticle radiation can be modelled. In addition to applications, nanoparticle impacts are also important to basic research in the nanoscience field, because the impacts provide an excellent case to test the applicability of atomic-level interaction models to very dynamic conditions. In this thesis, the stopping of nanoparticles in matter is explored using classical molecular dynamics computer simulations. The materials investigated are gold, silicon, and silica. Impacts on silicon through a native oxide layer and formation of complex craters are also simulated. Nanoparticles up to a diameter of 20 nm (315000 atoms) were used as projectiles. The molecular dynamics method and interatomic potentials for silicon and gold are examined in this thesis. It is shown that the displacement cascade expansionmechanism and crater crown formation are very sensitive to the choice of atomic interaction model. However, the best of the current interatomic models can be utilized in nanoparticle impact simulation, if caution is exercised. The stopping of monatomic ions in matter is understood very well nowadays. However, interactions become very complex when several atoms impact on a surface simultaneously and within a short distance, as happens in a nanoparticle impact. A high energy density is deposited in a relatively small volume, which induces ejection of material and formation of a crater. Very high yields of excavated material are observed experimentally. In addition, the yields scale nonlinearly with the cluster size and impact energy at small cluster sizes, whereas in macroscopic hypervelocity impacts, the scaling 2 is linear. The aim of this thesis is to explore the atomistic mechanisms behind the nonlinear scaling at small cluster sizes. It is shown here that the nonlinear scaling of ejected material yield disappears at large impactor sizes because the stopping mechanism of nanoparticles gradually changes to the same mechanism as in macroscopic hypervelocity impacts. The high yields at small impactor size are due to the early escape of energetic atoms from the hot region. In addition, the sputtering yield is shown to depend very much on the spatial initial energy and momentum distributions that the nanoparticle induces in the material in the first phase of the impact. At the later phases, the ejection of material occurs by several mechanisms. The most important mechanism at high energies or at large cluster sizes is atomic cluster ejection from the transient liquid crown that surrounds the crater. The cluster impact dynamics detected in the simulations are in agreement with several recent experimental results. In addition, it is shown that relatively weak impacts can induce modifications on the surface of an amorphous target over a larger area than was previously expected. This is a probable explanation for the formation of the complex crater shapes observed on these surfaces with atomic force microscopy. Clusters that consist of hundreds of thousands of atoms induce long-range modifications in crystalline gold.