908 resultados para Micro TAS
Resumo:
Microalgas e cianobactérias têm sido amplamente recomendadas para biomonitoração de metais pesados e outros poluentes, sendo considerados indicadores sensíveis às alterações ambientais e utilizados como organismos testes na regulamentação dos níveis de metal. Estes micro-organismos fotossintetizantes são produtores primários da base da cadeia alimentar aquática e são os primeiros a serem afetados pela poluição por metais pesados. O cobre é um metal normalmente considerado como nutriente essencial para a vida aquática mas pode ser tóxico para algumas espécies. Portanto, neste estudo foram avaliados o efeito tóxico e a bioacumulação de cobre (II) em quatro espécies de micro-organismos fotoautotróficos componentes do fitoplâncton dulcícola, duas cianobactérias filamentosas (Anabaena sp. e Oscillatoria sp) e duas microalgas da classe das clorofíceas (Monorraphidium sp. e Scenedesmus sp.). O meio de cultivo utilizado nos ensaios foi o ASM-1 com e sem a presença de cobre (0,6 mg/L a 12 mg Cu2+/L) onde, o efeito tóxico do metal foi monitorado por contagem celular para as microalgas e por peso seco para as cianobactérias. A bioacumulação do metal foi avaliada da mesma forma para todos os micro-organismos, através de coletas de amostras no decorrer do experimento e determinação da concentração de cobre em solução por espectrometria de absorção atômica com chama. Os resultados obtidos mostram que o efeito tóxico do metal é diretamente proporcional à concentração inicial para os micro-organismos estudados, mas que o cobre (II) foi mais tóxico para as cianobactérias que para as microalgas verdes. A bioacumulação teve uma relação direta com o efeito tóxico do metal sobre os micro-organismos. Os resultados obtidos permitem sugerir que cobre (II) tem efeito negativo no fitoplâncton, inibindo o crescimento e alterando parâmetros metabólicos como a fotossíntese. A bioacumulação do metal pode comprometer os níveis tróficos da cadeia alimentar, afetando seu transporte para seres superiores
Resumo:
Ordered granular systems have been a subject of active research for decades. Due to their rich dynamic response and nonlinearity, ordered granular systems have been suggested for several applications, such as solitary wave focusing, acoustic signals manipulation, and vibration absorption. Most of the fundamental research performed on ordered granular systems has focused on macro-scale examples. However, most engineering applications require these systems to operate at much smaller scales. Very little is known about the response of micro-scale granular systems, primarily because of the difficulties in realizing reliable and quantitative experiments, which originate from the discrete nature of granular materials and their highly nonlinear inter-particle contact forces.
In this work, we investigate the physics of ordered micro-granular systems by designing an innovative experimental platform that allows us to assemble, excite, and characterize ordered micro-granular systems. This new experimental platform employs a laser system to deliver impulses with controlled momentum and incorporates non-contact measurement apparatuses to detect the particles’ displacement and velocity. We demonstrated the capability of the laser system to excite systems of dry (stainless steel particles of radius 150 micrometers) and wet (silica particles of radius 3.69 micrometers, immersed in fluid) micro-particles, after which we analyzed the stress propagation through these systems.
We derived the equations of motion governing the dynamic response of dry and wet particles on a substrate, which we then validated in experiments. We then measured the losses in these systems and characterized the collision and friction between two micro-particles. We studied wave propagation in one-dimensional dry chains of micro-particles as well as in two-dimensional colloidal systems immersed in fluid. We investigated the influence of defects to wave propagation in the one-dimensional systems. Finally, we characterized the wave-attenuation and its relation to the viscosity of the surrounding fluid and performed computer simulations to establish a model that captures the observed response.
The findings of the study offer the first systematic experimental and numerical analysis of wave propagation through ordered systems of micro-particles. The experimental system designed in this work provides the necessary tools for further fundamental studies of wave propagation in both granular and colloidal systems.
Resumo:
As there exist some problems with the previous laser diode (LD) real-time microvibration measurement interferometers, such as low accuracy, correction before every use, etc., in this paper, we propose a new technique to realize the real-time microvibration measurement by using the LD sinusoidal phase-modulating interferometer, analyze the measurement theory and error, and simulate the measurement accuracy. This interferometer utilizes a circuit to process the interference signal in order to obtain the vibration frequency and amplitude of the detective signal, and a computer is not necessary in it. The influence of the varying light intensity and light path difference on the measurement result can be eliminated. This technique is real-time, convenient, fast, and can enhance the measurement accuracy too. Experiments show that the repeatable measurement accuracy is less than 3.37 nm, and this interferometer can be applied to real-time microvibration measurement of the MEMS. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Liquefaction is a devastating instability associated with saturated, loose, and cohesionless soils. It poses a significant risk to distributed infrastructure systems that are vital for the security, economy, safety, health, and welfare of societies. In order to make our cities resilient to the effects of liquefaction, it is important to be able to identify areas that are most susceptible. Some of the prevalent methodologies employed to identify susceptible areas include conventional slope stability analysis and the use of so-called liquefaction charts. However, these methodologies have some limitations, which motivate our research objectives. In this dissertation, we investigate the mechanics of origin of liquefaction in a laboratory test using grain-scale simulations, which helps (i) understand why certain soils liquefy under certain conditions, and (ii) identify a necessary precursor for onset of flow liquefaction. Furthermore, we investigate the mechanics of liquefaction charts using a continuum plasticity model; this can help in modeling the surface hazards of liquefaction following an earthquake. Finally, we also investigate the microscopic definition of soil shear wave velocity, a soil property that is used as an index to quantify liquefaction resistance of soil. We show that anisotropy in fabric, or grain arrangement can be correlated with anisotropy in shear wave velocity. This has the potential to quantify the effects of sample disturbance when a soil specimen is extracted from the field. In conclusion, by developing a more fundamental understanding of soil liquefaction, this dissertation takes necessary steps for a more physical assessment of liquefaction susceptibility at the field-scale.
Resumo:
El trabajo tiene como objetivos mostrar el uso de las patentes como medio de difusión de conocimiento y encontrar las claves más significativas de la evolución de la tecnología escogida.
Resumo:
An estimation method for the three-dimensional underwater shape of tuna longlines is developed, using measurements of depth obtained from micro-bathythermographs (BTs) attached to the main line at equally spaced intervals. The shape of the main line is approximated by a model which consists of a chain of unit length lines (folding-rule model), where the junction points are placed at the observed depths. Among the infinite number of possible shapes, the most likely shape is considered to be the smoothest one that can be obtained with a numerical optimization algorithm. To validate the method, a series of experimental longline operations were conducted in the equatorial region of the eastern Pacific Ocean, using 13 or 14 micro-BTs per basket of main line. Concurrent observations of oceanographic conditions (currents and temperature structure) were obtained. The shape of the main line can be calculated at arbitrary times during operations. Shapes were consistent with the current structure. On the equator, the line was elevated significantly by the Equatorial Undercurrent. It is shown that the shape of main line depends primarily upon the vertical shear and direction of the current relative to the gear. Time sequences of calculated shapes reveals that observed periodic (1-2 hours) oscillations in depth of the gear was caused by swinging movements of the main line. The shortening rate of the main line is an important parameter for formulating the shape of the longline, and its precise measurement is desirable.
Resumo:
In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces.
Resumo:
Nesse trabalho foram realizadas reações de substituição nucleofílica (SN2), utilizando aquecimento térmico convencional e por irradiação de micro-ondas (MO), de alguns átomos cloro em amostras comerciais de poli(cloreto de vinila) (PVC), por grupos nitrila e também por grupos azida. Os grupos nitrila e azida foram substituidos na matriz em diferentes teores (10% e 20%). As reações do PVC com azida foram eficazes, apresentado percentuais de derivatização muito próximos dos valores desejados. Já no estudo com a nitrila não foi obtido o resultado esperado. Os copolímeros PVC azido substituídos foram modificados com propargilato de etila, sob catálise de iodeto de cuproso (CuI), para a obtenção de heterocíclicos do tipo triazólicos. Todos os copolímeros obtidos foram caracterizados por espectroscopia na região do infravermelho (FTIR) e os teores de nitrogênio incorporado foram determinados por análise elementar (AE). Através da análise dos dados obtidos, foi comprovado que a utilização da irradiação micro-ondas, quando comparada ao aquecimento convencional, é um processo mais seletivo e diminui, significativamente, os tempos de reação