904 resultados para Metric interference
Resumo:
Mitochondrial transcription termination factor 1, MTERF1, has been reported to couple rRNA gene transcription initiation with termination and is therefore thought to be a key regulator of mammalian mitochondrial ribosome biogenesis. The prevailing model is based on a series of observations published over the last two decades, but no in vivo evidence exists to show that MTERF1 regulates transcription of the heavy-strand region of mtDNA containing the rRNA genes. Here, we demonstrate that knockout of Mterf1 in mice has no effect on mitochondrial rRNA levels or mitochondrial translation. Instead, loss of Mterf1 influences transcription initiation at the light-strand promoter, resulting in a decrease of de novo transcription manifested as reduced 7S RNA levels. Based on these observations, we suggest that MTERF1 does not regulate heavy-strand transcription, but rather acts to block transcription on the opposite strand of mtDNA to prevent transcription interference at the light-strand promoter.
Resumo:
The characterization and understanding of body to body communication channels is a pivotal step in the development of emerging wireless applications such as ad-hoc personnel localisation and context aware body area networks (CABAN). The latter is a recent innovation where the inherent mobility of body area networks can be used to improve the coexistence of multiple co-located BAN users. Rather than simply accepting reductions in communication performance, sensed changes in inter-network co-channel interference levels may facilitate intelligent inter-networking; for example merging or splitting with other BANs that remain in the same domain. This paper investigates the inter-body interference using controlled measurements of the full mesh interconnectivity between two ambulatory BANs operating in the same environment at 2.45 GHz. Each of the twelve network nodes reported received signal strength to allow for the creation of carrier to interference ratio time series with an overall entire mesh sampling period of 54 ms. The results indicate that even with two mobile networks, it is possible to identify the onset of co-channel interference as the BAN users move towards each other and, similarly, the transition to more favourable physical layer channel conditions as they move apart. © 2011 IEEE.
Resumo:
DeAuthentication Denial of Service attacks in Public Access WiFi operate by exploiting the lack of authentication of management frames in the 802.11 protocol. Detection of these attacks rely almost exclusively on the selection of appropriate thresholds. In this work the authors demonstrate that there are additional, previously unconsidered, metrics which also influence DoS detection performance. A method of systematically tuning these metrics to optimal values is proposed which ensures that parameter choices are repeatable and verifiable.
Resumo:
Many studies suggest a large capacity memory for briefly presented pictures of whole scenes. At the same time, visual working memory (WM) of scene elements is limited to only a few items. We examined the role of retroactive interference in limiting memory for visual details. Participants viewed a scene for 5?s and then, after a short delay containing either a blank screen or 10 distracter scenes, answered questions about the location, color, and identity of objects in the scene. We found that the influence of the distracters depended on whether they were from a similar semantic domain, such as "kitchen" or "airport." Increasing the number of similar scenes reduced, and eventually eliminated, memory for scene details. Although scene memory was firmly established over the initial study period, this memory was fragile and susceptible to interference. This may help to explain the discrepancy in the literature between studies showing limited visual WM and those showing a large capacity memory for scenes.
Resumo:
Body Area Networks are unique in that the large-scale mobility of users allows the network itself to travel across a diverse range of operating domains or even to enter new and unknown environments. This network mobility is unlike node mobility in that sensed changes in inter-network interference level may be used to identify opportunities for intelligent inter-networking, for example, by merging or splitting from other networks, thus providing an extra degree of freedom. This paper introduces the concept of context-aware bodynets for interactive environments using inter-network interference sensing. New ideas are explored at both the physical and link layers with an investigation based on a 'smart' office environment. A series of carefully controlled measurements of the mesh interconnectivity both within and between an ambulatory body area network and a stationary desk-based network were performed using 2.45 GHz nodes. Received signal strength and carrier to interference ratio time series for selected node to node links are presented. The results provide an insight into the potential interference between the mobile and static networks and highlight the possibility for automatic identification of network merging and splitting opportunities. © 2010 ACM.
Resumo:
A PMU based WAMS is to be placed on a weakly coupled section of distribution grid, with high levels of distributed generation. In anticipation of PMU data a Siemens PSS/E model of the electrical environment has been used to return similar data to that expected from the WAMS. This data is then used to create a metric that reflects optimization, control and protection in the region. System states are iterated through with the most desirable one returning the lowest optimization metric, this state is assessed against the one returned by PSS/E under normal circumstances. This paper investigates the circumstances that trigger SPS in the region, through varying generation between 0 and 110% and compromising the network through line loss under summer minimum and winter maximum conditions. It is found that the optimized state can generally tolerate an additional 2 MW of generation (3% of total) before encroaching the same thresholds and in one instance moves the triggering to 100% of generation output.
Resumo:
Femtocells being small low powered base stations provide sufficient increase in system capacity along with better indoor coverage. However, the dense deployment of femtocells face the main challenge of co channel interference with macrocell users. In this paper, this interference problem is addressed by proposing a novel downlink power control algorithm for femtocells. The proposed algorithm gradually reduces the downlink transmit power of femtocells when they are informed about a nearby macrocell user under interference. This information is given to the femtocells by the macrocell base station through a unidirectional downlink broadcast channel. Simulation results show that the algorithm causes the macrocell to accommodate large number of femtocells within its area, whereas at the same time protecting the macrocell users from any harmful interference.