904 resultados para Methylotrophic yeast
Resumo:
Histone H4 can be acetylated at N-terminal lysines K5, K8, K12, and K16, but newly synthesized H4 is diacetylated at K5/K12 in diverse organisms. This pattern is widely thought to be important for histone deposition onto replicating DNA. To investigate the importance of K5/K12 we have mutagenized these lysines in yeast and assayed for nucleosome assembly. Assaying was done in the absence of the histone H3 N terminus, which has functions redundant with those of H4 in histone deposition. Nucleosome assembly was assayed by three methods. Because nucleosome depletion may be lethal, we examined cell viability. We also analyzed nucleosome assembly in vivo and in vitro by examining plasmid superhelicity density in whole cells and supercoiling in yeast cell extracts. All three approaches demonstrate that mutagenizing K5 and K12 together does not prevent cell growth and histone deposition in vivo or in vitro. Therefore, K5/K12 cannot be required for nucleosome assembly in yeast. It is only when the first three sites of acetylation—K5, K8, and K12—are mutagenized simultaneously that lethality occurs and assembly is most strongly decreased both in vivo and in vitro. These data argue for the redundancy of sites K5, K8, and K12 in the deposition of yeast histone H4.
Resumo:
Nrd1 is an essential yeast protein of unknown function that has an RNA recognition motif (RRM) in its carboxyl half and a putative RNA polymerase II-binding domain, the CTD-binding motif, at its amino terminus. Nrd1 mediates a severe reduction in pre-mRNA production from a reporter gene bearing an exogenous sequence element in its intron. The effect of the inserted element is highly sequence-specific and is accompanied by the appearance of 3′-truncated transcripts. We have proposed that Nrd1 binds to the exogenous sequence element in the nascent pre-mRNA during transcription, aided by the CTD-binding motif, and directs 3′-end formation a short distance downstream. Here we show that highly purified Nrd1 carboxyl half binds tightly to the RNA element in vitro with sequence specificity that correlates with the efficiency of cis-element-directed down-regulation in vivo. A large deletion in the CTD-binding motif blocks down-regulation but does not affect the essential function of Nrd1. Furthermore, a nonsense mutant allele that produces truncated Nrd1 protein lacking the RRM has a dominant-negative effect on down-regulation but not on cell growth. Viability of this and several other nonsense alleles of Nrd1 appears to require translational readthrough, which in one case is extremely efficient. Thus the CTD-binding motif of Nrd1 is important for pre-mRNA down-regulation but is not required for the essential function of Nrd1. In contrast, the RNA-binding activity of Nrd1 appears to be required both for down-regulation and for its essential function.
Resumo:
Components of cellular stress responses can be identified by correlating changes in stress tolerance with gain or loss of function of defined genes. Previous work has shown that yeast cells deficient in Ppz1 protein phosphatase or overexpressing Hal3p, a novel regulatory protein of unknown function, exhibit increased resistance to sodium and lithium, whereas cells lacking Hal3p display increased sensitivity. These effects are largely a result of changes in expression of ENA1, encoding the major cation extrusion pump of yeast cells. Disruption or overexpression of HAL3 (also known as SIS2) has no effect on salt tolerance in the absence of PPZ1, suggesting that Hal3p might function upstream of Ppz1p in a novel signal transduction pathway. Hal3p is recovered from crude yeast homogenates by using immobilized, bacterially expressed Ppz1p fused to glutathione S-transferase, and it also copurifies with affinity-purified glutathione S-transferase-Ppz1p from yeast extracts. In both cases, the interaction is stronger when only the carboxyl-terminal catalytic phosphatase domain of Ppz1p is expressed. In vitro experiments reveal that the protein phosphatase activity of Ppz1p is inhibited by Hal3p. Overexpression of Hal3p suppresses the reduced growth rate because of the overexpression of Ppz1p and aggravates the lytic phenotype of a slt2/mpk1 mitogen-activated protein kinase mutant (thus mimicking the deletion of PPZ1). Therefore, Hal3p might modulate diverse physiological functions of the Ppz1 phosphatase, such as salt stress tolerance and cell cycle progression, by acting as a inhibitory subunit.
Resumo:
Abf2p is a high mobility group (HMG) protein found in yeast mitochondria that is required for the maintenance of wild-type (ρ+) mtDNA in cells grown on fermentable carbon sources, and for efficient recombination of mtDNA markers in crosses. Here, we show by two-dimensional gel electrophoresis that Abf2p promotes or stabilizes Holliday recombination junction intermediates in ρ+ mtDNA in vivo but does not influence the high levels of recombination intermediates readily detected in the mtDNA of petite mutants (ρ−). mtDNA recombination junctions are not observed in ρ+ mtDNA of wild-type cells but are elevated to detectable levels in cells with a null allele of the MGT1 gene (Δmgt1), which codes for a mitochondrial cruciform-cutting endonuclease. The level of recombination intermediates in ρ+ mtDNA of Δmgt1 cells is decreased about 10-fold if those cells contain a null allele of the ABF2 gene. Overproduction of Abf2p by ≥ 10-fold in wild-type ρ+ cells, which leads to mtDNA instability, results in a dramatic increase in mtDNA recombination intermediates. Specific mutations in the two Abf2p HMG boxes required for DNA binding diminishes these responses. We conclude that Abf2p functions in the recombination of ρ+ mtDNA.
Resumo:
The molecular mechanisms that coordinate cell morphogenesis with the cell cycle remain largely unknown. We have investigated this process in fission yeast where changes in polarized cell growth are coupled with cell cycle progression. The orb6 gene is required during interphase to maintain cell polarity and encodes a serine/threonine protein kinase, belonging to the myotonic dystrophy kinase/cot1/warts family. A decrease in Orb6 protein levels leads to loss of polarized cell shape and to mitotic advance, whereas an increase in Orb6 levels maintains polarized growth and delays mitosis by affecting the p34cdc2 mitotic kinase. Thus the Orb6 protein kinase coordinates maintenance of cell polarity during interphase with the onset of mitosis. orb6 interacts genetically with orb2, which encodes the Pak1/Shk1 protein kinase, a component of the Ras1 and Cdc42-dependent signaling pathway. Our results suggest that Orb6 may act downstream of Pak1/Shk1, forming part of a pathway coordinating cell morphogenesis with progression through the cell cycle.
Resumo:
Although the CLN3 gene for Batten disease, the most common inherited neurovisceral storage disease of childhood, was identified in 1995, the function of the corresponding protein still remains elusive. We previously cloned the Saccharomyces cerevisiae homologue to the human CLN3 gene, designated BTN1, which is not essential and whose product is 39% identical and 59% similar to Cln3p. We report that btn1-Δ deletion yeast strains are more resistant to d-(−)-threo-2-amino-1-[p-nitrophenyl]-1,3-propanediol (denoted ANP), a phenotype that is complemented in yeast by the human CLN3 gene. Furthermore, the severity of Batten disease in humans and the degree of ANP resistance in yeast are related when the equivalent amino acid replacements in Cln3p and Btn1p are compared. These results indicate that yeast can be used as a model for the study of Batten disease.
Resumo:
Yeast phosphatidylinositol transfer protein (Sec14p) function is essential for production of Golgi-derived secretory vesicles, and this requirement is bypassed by mutations in at least seven genes. Analyses of such ‘bypass Sec14p’ mutants suggest that Sec14p acts to maintain an essential Golgi membrane diacylglycerol (DAG) pool that somehow acts to promote Golgi secretory function. SPO14 encodes the sole yeast phosphatidylinositol-4,5-bisphosphate-activated phospholipase D (PLD). PLD function, while essential for meiosis, is dispensable for vegetative growth. Herein, we report specific physiological circumstances under which an unanticipated requirement for PLD activity in yeast vegetative Golgi secretory function is revealed. This PLD involvement is essential in ‘bypass Sec14p’ mutants where normally Sec14p-dependent Golgi secretory reactions are occurring in a Sec14p-independent manner. PLD catalytic activity is necessary but not sufficient for ‘bypass Sec14p’, and yeast operating under ‘bypass Sec14p’ conditions are ethanol-sensitive. These data suggest that PLD supports ‘bypass Sec14p’ by generating a phosphatidic acid pool that is somehow utilized in supporting yeast Golgi secretory function.
Resumo:
Telomere length is maintained through a dynamic balance between addition and loss of the terminal telomeric DNA. Normal telomere length regulation requires telomerase as well as a telomeric protein–DNA complex. Previous work has provided evidence that in the budding yeasts Kluyveromyces lactis and Saccharomyces cerevisiae, the telomeric double-stranded DNA binding protein Rap1p negatively regulates telomere length, in part by nucleating, by its C-terminal tail, a higher-order DNA binding protein complex that presumably limits access of telomerase to the chromosome end. Here we show that in K. lactis, truncating the Rap1p C-terminal tail (Rap1p-ΔC mutant) accelerates telomeric repeat turnover in the distal region of the telomere. In addition, combining the rap1-ΔC mutation with a telomerase template mutation (ter1-kpn), which directs the addition of mutated telomeric DNA repeats to telomeres, synergistically caused an immediate loss of telomere length regulation. Capping of the unregulated telomeres of these double mutants with functionally wild-type repeats restored telomere length control. We propose that the rate of terminal telomere turnover is controlled by Rap1p specifically through its interactions with the most distal telomeric repeats.
Resumo:
The 436-amino acid protein enolase 1 from yeast was degraded in vitro by purified wild-type and mutant yeast 20S proteasome particles. Analysis of the cleavage products at different times revealed a processive degradation mechanism and a length distribution of fragments ranging from 3 to 25 amino acids with an average length of 7 to 8 amino acids. Surprisingly, the average fragment length was very similar between wild-type and mutant 20S proteasomes with reduced numbers of active sites. This implies that the fragment length is not influenced by the distance between the active sites, as previously postulated. A detailed analysis of the cleavages also allowed the identification of certain amino acid characteristics in positions flanking the cleavage site that guide the selection of the P1 residues by the three active β subunits. Because yeast and mammalian proteasomes are highly homologous, similar cleavage motifs might be used by mammalian proteasomes. Therefore, our data provide a basis for predicting proteasomal degradation products from which peptides are sampled by major histocompatibility complex class I molecules for presentation to cytotoxic T cells.
Resumo:
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides. Class I RNRs are composed of two types of subunits: RNR1 contains the active site for reduction and the binding sites for the nucleotide allosteric effectors. RNR2 contains the diiron-tyrosyl radical (Y⋅) cofactor essential for the reduction process. Studies in yeast have recently identified four RNR subunits: Y1 and Y3, Y2 and Y4. These proteins have been expressed in Saccharomyces cerevisiae and in Escherichia coli and purified to ≈90% homogeneity. The specific activity of Y1 isolated from yeast and E. coli is 0.03 μmol⋅min−1⋅mg−1 and of (His)6-Y2 [(His)6-Y2-K387N] from yeast is 0.037 μmol⋅min−1⋅mg−1 (0.125 μmol⋅min−1⋅mg−1). Y2, Y3, and Y4 isolated from E. coli have no measurable activity. Efforts to generate Y⋅ in Y2 or Y4 using Fe2+, O2, and reductant have been unsuccessful. However, preliminary studies show that incubation of Y4 and Fe2+ with inactive E. coli Y2 followed by addition of O2 generates Y2 with a specific activity of 0.069 μmol⋅min−1⋅mg−1 and a Y⋅. A similar experiment with (His)6-Y2-K387N, Y4, O2, and Fe2+ results in an increase in its specific activity to 0.30 μmol⋅min−1⋅mg−1. Studies with antibodies to Y4 and Y2 reveal that they can form a complex in vivo. Y4 appears to play an important role in diiron-Y⋅ assembly of Y2.
Resumo:
Histone deacetylases such as human HDAC1 and yeast RPD3 are trichostatin A (TSA)-sensitive enzymes that are members of large, multiprotein complexes. These contain specialized subunits that help target the catalytic protein to histones at the appropriate DNA regulatory element, where the enzyme represses transcription. To date, no deacetylase catalytic subunits have been shown to have intrinsic activity, suggesting that noncatalytic subunits of the deacetylase complex are required for their enzymatic function. In this paper we describe a novel yeast histone deacetylase HOS3 that is relatively insensitive to the histone deacetylase inhibitor TSA, forms a homodimer when expressed ectopically both in yeast and Escherichia coli, and has intrinsic activity when produced in the bacterium. Most HOS3 protein can be found associated with a larger complex in partially purified yeast nuclear extracts, arguing that the HOS3 homodimer may be dissociated from a very large nuclear structure during purification. We also demonstrate, using a combination of mass spectrometry, tandem mass spectrometry, and proteolytic digestion, that recombinant HOS3 has a distinct specificity in vitro for histone H4 sites K5 and K8, H3 sites K14 and K23, H2A site K7, and H2B site K11. We propose that while factors that interact with HOS3 may sequester the catalytic subunit at specific cellular sites, they are not required for HOS3 histone deacetylase activity.
Resumo:
Chorismate mutase acts at the first branchpoint of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. Comparison of the x-ray structures of allosteric chorismate mutase from the yeast Saccharomyces cerevisiae with Escherichia coli chorismate mutase/prephenate dehydratase suggested conserved active sites between both enzymes. We have replaced all critical amino acid residues, Arg-16, Arg-157, Lys-168, Glu-198, Thr-242, and Glu-246, of yeast chorismate mutase by aliphatic amino acid residues. The resulting enzymes exhibit the necessity of these residues for catalytic function and provide evidence of their localization at the active site. Unlike some bacterial enzymes, yeast chorismate mutase has highest activity at acidic pH values. Replacement of Glu-246 in the yeast chorismate mutase by glutamine changes the pH optimum for activity of the enzyme from a narrow to a broad pH range. These data suggest that Glu-246 in the catalytic center must be protonated for maximum catalysis and restricts optimal activity of the enzyme to low pH.
Resumo:
A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.
Resumo:
To understand the structure, role, and regulation of individual Ca2+ pumps in plants, we have used yeast as a heterologous expression system to test the function of a gene from Arabidopsis thaliana (ECA1). ECA1 encoded a 116-kDa polypeptide that has all the conserved domains common to P-type Ca2+ pumps (EC 3.6.1.38). The amino acid sequence shared more identity with sarcoplasmic/endoplasmic reticulum (53%) than with plasma membrane (32%) Ca2+ pumps. Yeast mutants defective in a Golgi Ca2+ pump (pmr1) or both Golgi and vacuolar Ca2+ pumps (pmr1 pmc1 cnb1) were sensitive to growth on medium containing 10 mM EGTA or 3 mM Mn2+. Expression of ECA1 restored growth of either mutant on EGTA. Membranes were isolated from the pmr1 pmc1 cnb1 mutant transformed with ECA1 to determine if the ECA1 polypeptide (ECA1p) could be phosphorylated as intermediates of the reaction cycle of Ca2+-pumping ATPases. In the presence of [γ-32P]ATP, ECA1p formed a Ca2+-dependent [32P]phosphoprotein of 106 kDa that was sensitive to hydroxylamine. Cyclopiazonic acid, a blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+ pumps, inhibited the formation of the phosphoprotein, whereas thapsigargin did not. Immunoblotting with an antibody against the carboxyl tail showed that ECA1p was associated mainly with the endoplasmic reticulum membranes isolated from Arabidopsis plants. The results support the model that ECA1 encodes an endoplasmic reticulum-type Ca2+ pump in Arabidopsis. The ability of ECA1p to restore growth of mutant pmr1 on medium containing Mn2+, and the formation of a Mn2+-dependent phosphoprotein suggested that ECA1p may also regulate Mn2+ homeostasis by pumping Mn2+ into endomembrane compartments of plants.
Resumo:
A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses (“endoreplication”) or initiation of mitosis before DNA is fully replicated (“mitotic catastrophe”). Some of the genetic interactions involved in these controls have recently been identified in yeast. From this evidence we propose a molecular mechanism of “Start” control in Schizosaccharomyces pombe. Using established principles of biochemical kinetics, we compare the properties of this model in detail with the observed behavior of various mutant strains of fission yeast: wee1− (size control at Start), cdc13Δ and rum1OP (endoreplication), and wee1− rum1Δ (rapid division cycles of diminishing cell size). We discuss essential features of the mechanism that are responsible for characteristic properties of Start control in fission yeast, to expose our proposal to crucial experimental tests.