812 resultados para Metal-cutting
Resumo:
Forensic laboratories mainly focus on the qualification and the quantitation of the illicit drug under analysis as both aspects are used for judiciary purposes. Therefore, information related to cutting agents (adulterants and diluents) detected in illicit drugs is limited in the forensic literature. This article discusses the type and frequency of adulterants and diluents detected in more than 6000 cocaine specimens and 3000 heroin specimens, confiscated in western Switzerland from 2006 to 2014. The results show a homogeneous and quite unchanging adulteration for heroin, while for cocaine it could be characterised as heterogeneous and relatively dynamic. Furthermore, the results indicate that dilution affects more cocaine than heroin. Therefore, the results provided by this study tend to reveal differences between the respective structures of production or distribution of cocaine and heroin. This research seeks to promote the systematic analysis of cutting agents by forensic laboratories. Collecting and processing data related to the presence of cutting agents in illicit drug specimens produces relevant information to understand and to compare the structure of illicit drug markets.
Resumo:
BACKGROUND: The prognosis of patients with cirrhosis and acute variceal bleeding is very poor when the standard-of-care fails to control bleeding. New treatment modalities are needed in these patients. AIM: To synthesise the available evidence on the efficacy of self-expanding metal stents (SEMS) in patients with cirrhosis and severe or refractory oesophageal variceal bleeding. METHODS: Meta-analysis of trials evaluating SEMS in patients with cirrhosis and severe or refractory oesophageal variceal bleeding. RESULTS: Thirteen studies were included. The pooled estimate rates were 0.40 (95% confidence interval, CI = 0.31-0.49) for death, 0.41 (95% CI = 0.29-0.53) for liver-related death and 0.36 (95% CI = 0.26-0.47) for death at day 30, with low heterogeneity between studies. The pooled estimate rates were 0.12 (95% CI = 0.07-0.21) for mortality related to variceal bleeding, and 0.18 (95% CI = 0.11-0.29) for failure to control bleeding with SEMS, with no or low heterogeneity between studies. The pooled estimate rate were 0.16 (95% CI = 0.04-0.48) for rebleeding after stent removal and 0.28 (95% CI = 0.17-0.43) for stent migration, with high heterogeneity. A significant proportion of patients had access to liver transplantation or to TIPSS [pooled estimate rate 0.10 (95% CI = 0.04-0.21) and 0.26 (95% CI = 0.18-0.36), respectively]. CONCLUSIONS: Fewer than 40% of patients treated with SEMS were dead at 1 month. SEMS can be used as a bridge to TIPSS or to liver transplantation in a significant proportion of patients. Additional studies are required to identify potential risk factors leading to a poor prognosis in patients with acute variceal bleeding in whom the use of SEMS could be considered.
Resumo:
Nanogenotoxicity is a crucial endpoint in safety testing of nanomaterials as it addresses potential mutagenicity, which has implications for risks of both genetic disease and carcinogenesis. Within the NanoTEST project, we investigated the genotoxic potential of well-characterised nanoparticles (NPs): titanium dioxide (TiO2) NPs of nominal size 20 nm, iron oxide (8 nm) both uncoated (U-Fe3O4) and oleic acid coated (OC-Fe3O4), rhodamine-labelled amorphous silica 25 (Fl-25 SiO2) and 50 nm (Fl-50 SiO) and polylactic glycolic acid polyethylene oxide polymeric NPs - as well as Endorem® as a negative control for detection of strand breaks and oxidised DNA lesions with the alkaline comet assay. Using primary cells and cell lines derived from blood (human lymphocytes and lymphoblastoid TK6 cells), vascular/central nervous system (human endothelial human cerebral endothelial cells), liver (rat hepatocytes and Kupffer cells), kidney (monkey Cos-1 and human HEK293 cells), lung (human bronchial 16HBE14o cells) and placenta (human BeWo b30), we were interested in which in vitro cell model is sufficient to detect positive (genotoxic) and negative (non-genotoxic) responses. All in vitro studies were harmonized, i.e. NPs from the same batch, and identical dispersion protocols (for TiO2 NPs, two dispersions were used), exposure time, concentration range, culture conditions and time-courses were used. The results from the statistical evaluation show that OC-Fe3O4 and TiO2 NPs are genotoxic in the experimental conditions used. When all NPs were included in the analysis, no differences were seen among cell lines - demonstrating the usefulness of the assay in all cells to identify genotoxic and non-genotoxic NPs. The TK6 cells, human lymphocytes, BeWo b30 and kidney cells seem to be the most reliable for detecting a dose-response.
Resumo:
The illicit drug cutting represents a complex problem that requires the sharing of knowledge from addiction studies, toxicology, criminology and criminalistics. Therefore, cutting is not well known by the forensic community. Thus, this review aims at deciphering the different aspects of cutting, by gathering information mainly from criminology and criminalistics. It tackles essentially specificities of cocaine and heroin cutting. The article presents the detected cutting agents (adulterants and diluents), their evolution in time and space and the analytical methodology implemented by forensic laboratories. Furthermore, it discusses when, in the history of the illicit drug, cutting may take place. Moreover, researches studying how much cutting occurs in the country of destination are analysed. Lastly, the reasons for cutting are addressed. According to the literature, adulterants are added during production of the illicit drug or at a relatively high level of its distribution chain (e.g. before the product arrives in the country of destination or just after its importation in the latter). Their addition seems hardly justified by the only desire to increase profits or to harm consumers' health. Instead, adulteration would be performed to enhance or to mimic the illicit drug effects or to facilitate administration of the drug. Nowadays, caffeine, diltiazem, hydroxyzine, levamisole, lidocaïne and phenacetin are frequently detected in cocaine specimens, while paracetamol and caffeine are almost exclusively identified in heroin specimens. This may reveal differences in the respective structures of production and/or distribution of cocaine and heroin. As the relevant information about cutting is spread across different scientific fields, a close collaboration should be set up to collect essential and unified data to improve knowledge and provide information for monitoring, control and harm reduction purposes. More research, on several areas of investigation, should be carried out to gather relevant information.
Resumo:
The metal-catalyzed autooxidation of S(IV) has been studied for more than a century without a consensus being obtained as to reaction rates, rate laws or mechanisms. The main objective in this work was to explore the reaction between Cu(II) and SO2 in the presence of M(II), paying special attention to the formation of double sulfites like Cu2SO3.M(II)SO3.2H 2O. The two principal aspects studied were: i) a new way to prepare double sulfites with high purity degree and the selectivity in the M(II) incorporation during the salt formation.
Resumo:
Their extended transparency in the IR makes them attractive for use as optical fibers for CO laser power delivery and optical amplification. This paper firstly describes the spectacular stabilizing effect of MgF2 on the binary system InF3-BaF2. The investigation of the InF3-BaF2-MgF2 system led to samples up to 5mm in thickness. Further optimization of this system was achieved by incorporation of limited amounts of other fluorides and resulted in increased resistence to devitrification. The second approach of this work was concerned to the investigation of the pseudo-ternary system InF3-GdF3-GaF3 at constant concentrations of ZnF2-SrF2-BaF2-NaF. Several compositions were studied in this system. The samples presented a better thermal stability when compared to other families of fluoride glasses. Therefore, these glasses seem to be very promising for the fabrication of special optical fibers. Thermal data are reported.
Resumo:
In this work is presented and tested (for 106 adducts, mainly of the zinc group halides) two empirical equations supported in TG data to estimate the value of the metal-ligand bond dissociation enthalpy for adducts: <D> (M-O) = t i / g if t i < 420 K and <D> (M-O) = (t i / g ) - 7,75 . 10-2 . t i if t i > 420 K. In this empirical equations, t i is the thermodynamic temperature of the beginning of the thermal decomposition of the adduct, as determined by thermogravimetry, andg is a constant factor that is function of the metal halide considered and of the number of ligands, but is not dependant of the ligand itself. To half of the tested adducts the difference between experimental and calculated values was less than 5%. To about 80% of the tested adducts, the difference between the experimental (calorimetric) and the calculated (using the proposed equations) values are less than 15%.
Resumo:
The influence of the presence of hydrogen on Pt/TiO2 catalysts submitted to reduction treatment has been studied by FT-IR at room temperature. After submitting to LTR treatment, the hydrogen spillover has been detected and the presence of hydrogen at the bulk is shown to produce a strong absorption in the infrared spectral region. After HTR treatment, the hydrogen is strongly chemissorbed.
Resumo:
For two important metal oxides (MO, M=Mg, Zn) we predict, via accurate electronic structure calculations, that new low-density nanoporous crystalline phases may be accessible via the coalescence of nanocluster building blocks. Specifically, we consider the assembly of cagelike (MO)12 clusters exhibiting particularly high gas phase stability, leading to new polymorphs with energetic stabilities rivaling (and sometimes higher) than those of known MO polymorphs.
Resumo:
Chemically modified electrodes based on hexacyanometalate films are presented as a tool in analytical chemistry. Use of amperometric sensors and/or biosensors based on the metal-hexacyanoferrate films is a tendency. This article reviews some applications of these films for analytical determination of both inorganic (e.g. As3+, S2O3(2-)) and organic (e.g. cysteine, hydrazine, ascorbic acid, gluthatione, glucose, etc.) compounds.
Resumo:
In the present work electroluminescence in Si-SiO2 structures has been investigated. Electroluminescence has been recorded in the range of 250-900 nm in a system of electrolyte-insulator-semiconductor at the room temperature. The heating process of electrons in SiO2 was studied and possibility of separation it into two phases has been shown. The nature of luminescence centers and the model of its formation were proposed. This paper also includes consideration of oxide layer formation. Charge transfer mechanisms have been attended as well. The nature of electroluminescence is understood in detail. As a matter of fact, electron traps in silicon are the centers of luminescence. Electroluminescence occurs when electrons move from one trap to another. Thus the radiation of light quantum occurs. These traps appear as a result of the oxide growth. At the same time the bonds deformation of silicon atoms with SiOH groups is not excludes. As a result, dangling bonds are appeared, which are the trapping centers or the centers of luminescence.
Resumo:
Antioxidant enzymes are involved in important processes of cell detoxification during oxidative stress and have, therefore, been used as biomarkers in algae. Nevertheless, their limited use in fluvial biofilms may be due to the complexity of such communities. Here, a comparison between different extraction methods was performed to obtain a reliable method for catalase extraction from fluvial biofilms. Homogenization followed by glass bead disruption appeared to be the best compromise for catalase extraction. This method was then applied to a field study in a metal-polluted stream (Riou Mort, France). The most polluted sites were characterized by a catalase activity 4–6 times lower than in the low-polluted site. Results of the comparison process and its application are promising for the use of catalase activity as an early warning biomarker of toxicity using biofilms in the laboratory and in the field
Resumo:
It is a well known phenomenon that the constant amplitude fatigue limit of a large component is lower than the fatigue limit of a small specimen made of the same material. In notched components the opposite occurs: the fatigue limit defined as the maximum stress at the notch is higher than that achieved with smooth specimens. These two effects have been taken into account in most design handbooks with the help of experimental formulas or design curves. The basic idea of this study is that the size effect can mainly be explained by the statistical size effect. A component subjected to an alternating load can be assumed to form a sample of initiated cracks at the end of the crack initiation phase. The size of the sample depends on the size of the specimen in question. The main objective of this study is to develop a statistical model for the estimation of this kind of size effect. It was shown that the size of a sample of initiated cracks shall be based on the stressed surface area of the specimen. In case of varying stress distribution, an effective stress area must be calculated. It is based on the decreasing probability of equally sized initiated cracks at lower stress level. If the distribution function of the parent population of cracks is known, the distribution of the maximum crack size in a sample can be defined. This makes it possible to calculate an estimate of the largest expected crack in any sample size. The estimate of the fatigue limit can now be calculated with the help of the linear elastic fracture mechanics. In notched components another source of size effect has to be taken into account. If we think about two specimens which have similar shape, but the size is different, it can be seen that the stress gradient in the smaller specimen is steeper. If there is an initiated crack in both of them, the stress intensity factor at the crack in the larger specimen is higher. The second goal of this thesis is to create a calculation method for this factor which is called the geometric size effect. The proposed method for the calculation of the geometric size effect is also based on the use of the linear elastic fracture mechanics. It is possible to calculate an accurate value of the stress intensity factor in a non linear stress field using weight functions. The calculated stress intensity factor values at the initiated crack can be compared to the corresponding stress intensity factor due to constant stress. The notch size effect is calculated as the ratio of these stress intensity factors. The presented methods were tested against experimental results taken from three German doctoral works. Two candidates for the parent population of initiated cracks were found: the Weibull distribution and the log normal distribution. Both of them can be used successfully for the prediction of the statistical size effect for smooth specimens. In case of notched components the geometric size effect due to the stress gradient shall be combined with the statistical size effect. The proposed method gives good results as long as the notch in question is blunt enough. For very sharp notches, stress concentration factor about 5 or higher, the method does not give sufficient results. It was shown that the plastic portion of the strain becomes quite high at the root of this kind of notches. The use of the linear elastic fracture mechanics becomes therefore questionable.