698 resultados para Mesoscopic superconductors
Resumo:
Attention has recently focussed on MgB2 superconductors (Tc~39K) which can be formed into wires with high material density and viable critical current densities (Jc)1. However, broader utilisation of this diboride and many others is likely to occur when facile synthesis for bulk applications is developed. To date, common synthesis methods include high temperature sintering of mixed elemental powders2, combustion synthesis3, mechano-chemical mixing with high temperature sintering4 and high pressure (~GPa region) with high temperature. In this work, we report on a lower temperature, moderate (<4MPa) pressure method to synthesise metal diborides.
Resumo:
The metal borides, in particular the diborides and hexaborides, contain stoichiometric forms that include insulators, semiconductors and superconductors. In addition, their end-member structures have high symmetry and two atoms although, in general, substitution(s) of multi-valent ions into the metal site occurs consistent with Vegard’s law. These characteristics allow for fundamental comparison of important physical properties such as superconductivity and insulation within a relatively simple structure type. Our early work1,2 has demonstrated this for the hexaborides and this work compares similar attributes across a broader suite of boride structures. In all cases, theoretical calculations are referenced to structures determined via high resolution neutron or X-ray diffraction experiments.
Resumo:
We show that the well-known Kohn anomaly predicts Tc for ordered AlB2-type structures. We use ab initio Density Functional Theory to calculate phonon dispersions for Mg1-xAlxB2 compositions and identify a phonon anomaly with magnitude that predicts experimental values of Tc for all x. Key features of these anomalies correlate with the electronic structure of Mg1-xAlxB2. This approach predicts Tc for other known AlB2-type structures as well as new compositions. We predict that Mg0.5Ba0.5B2 will show Tc = 63.6 ± 6.6 K. Other forms of the Mg1-xBaxB2 series will also be superconductors when successfully synthesised. Our calculations predict that the end-member composition, BaB2, is likely to show a Tc significantly higher than currently achieved by other diborides although an applied pressure ~16 GPa may be required to stabilise the structure.
Resumo:
Isotope-shift exponent (cu) and the pressure coefficient of superconducting transition temperature (beta) have been studied in the nonadiabatic limit. We have considered the effect of nonadiabaticity in both within and beyond the Migdal-Eliashberg formalism. It reveals from our study that the pressure coefficient of superconducting transition is high for the low-T-c region and low for the high-T-c region and the minimum value of alpha is obtained where the transition temperature is maximum. Lowest value of isotope-shift exponent is obtained for small momentum exchange between the electrons and the bosonic field. Qualitative variation of beta with temperature is consistent with the experimental results of the hole doped superconductors for small momentum exchange.
Resumo:
Studies of Bi heteroepitaxy on Si(001) have shown that lines grow to lengths of up to 500nm if the substrate is heated to above the Bi desorption temperature (500°C) during or after Bi deposition. Unlike many other nanoline systems, the lines formed by this nonequilibrium growth process have no detectable width dispersion. Although much attention has been given to the atomic geometery of the line, in this paper, we focus on how the lines can be used to create a majority 2×1 domain orientation. It is demonstrated that the Bi lines can be used to produce a single-domain orientation on Si(001) if the lines are grown on Si(001) surfaces with a regular distribution of single height steps. This is a compelling example of how a nanoscale motif can be used to modify mesoscopic surface structure on Si(001).
Resumo:
Conductance measurements of junctions between a high- superconductor and a metallic oxide have been carried out along the a-b plane to examine the tunnel-junction spectra. For these measurements, in situ films have been grown on c-axis oriented thin films using the pulsed laser deposition technique. Two distinctive energy gaps have been observed along with conductance peaks around zero bias. The analysis of zero-bias conductance and energy gap data suggests the presence of midgap states located at the centre of a finite energy gap. The results obtained are also in accordance with the d-wave nature of high- superconductors.
Resumo:
The perovskites, Y0.75La0.25Ba2Cu3O7 and Y0.75Lu0.25Ba2Cu3O7, show high-Tc superconductivity (with zero resistance at or above 80 K), just as the parent compound YBa2Cu3O7. The Lu-substituted oxide, with the smallest unit-cell parameters, shows the highest Tc besides exhibiting a 100% Meissner effect. Hc1, in these oxides is around 25 mT, but the Hc2, is large. The thermopower of YBa2Cu3O7 shows a sharp transition to zero at the superconducting transition, reinforcing the bulk nature of the superconductivity. Preliminary studies show that ErBa2Cu3O7 and Er0.5Y0.5Ba2Cu3O7 are both high-temperature superconductors with zero resistance in the 82-90 K range.
Resumo:
ErBa2Cu3O7 and Er0.5Y0.5Ba2Cu3O7 are both high-Tc superconductors attaining zero resistance above 80 K. Preliminary studies indicate that Yb1−xYxBa2Cu3O7 also exhibits zero resistance above 77 K.
Resumo:
Several biphasic compositions of the type Y3-xBa3+xCu6O14 show an onset of superconductivity in the 90-115K range, attaining zero resistance in the 70-85K range. The phase responsible for superconductivity in these compositions is a perovskite oxide of composition YBa2Cu3 O7. This oxide annealed in oxygen shows the onset of superconductivity at 120K and zero resistance at 87K. YBa2,Cu3O7 shows the highest Meissner effect of all oxide superconductors. The superconducting behaviour of the two perovskite oxides, Y0.95Ba1.95,Cu3O7 and Y1.05Ba1.95Cu3O7 show interesting features; a marked decrease in resistivity is observed from room temperature itself in the former oxide with zero resistance at 89K. Electron microscopy and infrared spectra of these oxides are briefly discussed.
Resumo:
The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B-perpendicular to. While the amplitude of the oscillations is strongly enhanced with increasing B-perpendicular to, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (d rho/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.
Resumo:
We report experimental observation of an unexpectedly large thermopower in mesoscopic two-dimensional (2D) electron systems in GaAs/AlGaA heterostructures at sub-Kelvin temperatures and zero magnetic field. Unlike conventional nonmagnetic high-mobility 2D systems, the thermopower in our devices increases with decreasing temperature below 0.3 K, reaching values in excess of 100 mu V/K, thus exceeding the free electron estimate by more than 2 orders of magnitude. With support from a parallel study of the local density of states, we suggest such a phenomenon to be linked to intrinsic localized states and many-body spin correlations in the system.
Resumo:
We have shown that novel synthesis methods combined with careful evaluation of DFT phonon calculations provides new insight into boron compounds including a capacity to predict Tc for AlB2-type superconductors.
Resumo:
The effect of microwave radiation on the electron-phonon vertex in superconductors is taken into account. This leads to an enhancement of effective pairing interaction and hence to the transition temperature (Tc) which depends on the photon density and the frequency. This prediction is in agreement with recent experimental results.
Resumo:
Electronic, magnetic, or structural inhomogeneities ranging in size from nanoscopic to mesoscopic scales seem endemic and are possibly generic to colossal magnetoresistance manganites and other transition metal oxides. They are hence of great current interest and understanding them is of fundamental importance. We show here that an extension, to include long-range Coulomb interactions, of a quantum two-fluid l-b model proposed recently for manganites [Phys. Rev. Lett. 92, 157203 (2004)] leads to an excellent description of such inhomogeneities. In the l-b model two very different kinds of electronic states, one localized and polaronic (l) and the other extended or broad band (b) coexist. For model parameters appropriate to manganites and even within a simple dynamical mean-field theory (DMFT) framework, it describes many of the unusual phenomena seen in manganites, including colossal magnetoresistance (CMR), qualitatively and quantitatively. However, in the absence of long-ranged Coulomb interaction, a system described by such a model would actually phase separate, into macroscopic regions of l and b electrons, respectively. As we show in this paper, in the presence of Coulomb interactions, the macroscopic phase separation gets suppressed and instead nanometer scale regions of polarons interspersed with band electron puddles appear, constituting a kind of quantum Coulomb glass. We characterize the size scales and distribution of the inhomogeneity using computer simulations. For realistic values of the long-range Coulomb interaction parameter V-0, our results for the thresholds for occupancy of the b states are in agreement with, and hence support, the earlier approach mentioned above based on a configuration averaged DMFT treatment which neglects V-0; but the present work has features that cannot be addressed in the DMFT framework. Our work points to an interplay of strong correlations, long-range Coulomb interaction, and dopant ion disorder, all inevitably present in transition metal oxides as the origin of nanoscale inhomogeneities rather than disorder frustrated phase competition as is generally believed. As regards manganites, it argues against explanations for CMR based on disorder frustrated phase separation and for an intrinsic origin of CMR. Based on this, we argue that the observed micrometer (meso) scale inhomogeneities owe their existence to extrinsic causes, e.g., strain due to cracks and defects. We suggest possible experiments to validate our speculation.
Resumo:
Glass transition and relaxation of the glycerol-water (G-W) binary mixture system have been studied over the glycerol concentration range of 5-85 mol% by using the highly sensitive technique of electron spin resonance (ESR). For the water rich mixture the glass transition,sensed by the dissolved spin probe, arises from the vitrified mesoscopic portion of the binary system. The concentration dependence of the glass transition temperature manifests a closely related molecular level cooperativity in the system. A drastic change in the mesoscopic structure of the system at the critical concentration of 40 mol is confirmed by an estimation of the spin probe effective volume in a temperature range where the tracer reorientation is strongly coupled to the system dynamics.