969 resultados para Mercury, Screen printed electrode, Burkina Faso, Pollution, Groundwater
Resumo:
Fresh water and fish are important to the people who live in the Lake Victoria region therefore the quality of the water and fish is of major importance (Johnson & Odada, 1996). It is well known that dirty water and spoilt fish can lead to poor health and lower standards of living, and that quality can be affected by the pollution in the environment. Even though Lake Victoria is very large, it is relatively shallow and the water remains in the lake basin for a long time (Bootsma & Hecky, 1993). There are a number of environmental issues in Lake Victoria, including water hyacinth~over-population and increased farming causing problems with the lake ecosystem. All these factors combine to keep contaminants within the lake for long time, which will lead to gradually increasing concentrations in the lake. Pollution is a term that covers a wide variety of chemicals and physical changes and their adverse effects on the environment. Here we focus on contaminants, which are unwanted chemicals introduced to the environment. Contaminants include a very wide variety of chemicals, both man-made and natural, for example, mercury, pesticides and herbicides, heavy metals, and natural plant and algae toxins. Many contaminants do not always lead to adverse effects immediately, but can gradually induce long-term problems leading to chronic illnesses and physical damage. A few contaminants have very rapid impacts resulting in immediately obvious changes such as death or injury. Sources of contaminants are varied. Contaminants can get in the lake by the way of agricultural treatment of crops near the lake, industrial effluent, intentional introduction such as fish poisoning byfishermen, natural sources such as heavy metals from particular types of rocks, and even some plants naturally release their toxins. Contaminant sources are not always found near Lake Victoria.
Resumo:
In the present paper, sorption, persistence, and leaching behavior of three microcystin variants in Chinese agriculture soils were examined. Based on this study, the values of capacity factor and slope for three MCs variants in three soils ranged from 0.69 to 6.00, and 1.01 to 1.54, respectively. The adsorption of MCs in the soils decreased in the following order: RR > Dha(7) LR > LR. Furthermore, for each MC variant in the three soils, the adsorption rate in the soils decreased in the following order: soil A > soil C > soil B. The calculated half-time ranged between 7.9 and 17.8 days for MC-RR, 6.0-17.1 days for MC-LR, and 7.1-10.2 days for MC-Dha(7) LR. Results from leaching experiments demonstrated that recoveries of toxins in leachates ranged from 0-16.7% for RR, 73.2-88.9% for LR, and 8.9-73.1% for Dha 7 LR. The GUS value ranged from 1.48 to 2.06 for RR, 1.82-2.88 for LR, and 1.76-2.09 for Dha(7) LR. Results demonstrated the use of cyanobacterial collections as plant fertilizer is likely to be unsafe in soils. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
PVC based membranes of a double armed crown ether, N, N'-dibenzyl, 1,4,10,13-tetraoxa-7, 16-diaza cyclooctadecane (I) as ionophore with sodium tetra phenyl borate (NaTPB) as anion excluder and with many plasticizing solvent mediators have been prepared and used for Hg(II) ion determination. The membrane with DBBP (dibutyl butyl phosphonate ) as plasticizer with various ingredients in the ratio PVC: I: NaTPB: DBBP (150: 12: 2: 100) shows the best results in terms of working concentration range (3.1x10-5-1.0x10-tM) with a Nernstian slope (29.0′0.5 mV/decade of activity). The electrode works in the pH range 2.1-4.5. The response time of the sensor is 15s and it can be used for about 4 months in aqueous as well as in non-aqueous medium. It has good stability and reproducibility. The potentiometric selectivity coefficient values for mono-, di-, and trivalent cations are tabulated. The sensor is highly selective for Hg2+ in the presence of normal interferents like cadmium, silver, sodium and iron.
Resumo:
The influence of K7Fe3+P2W17O62H2 on l-alpha-phosphatidylcholine/cholesterol bilayer lipid membrane on Pt electrode was studied by voltammetry and AC impedance spectroscopy. The interaction of the polyoxometalates with the BLM can promote the access of Ru(NH3)(6)(3+) and [Fe(CN)(6)](3-/4-) to the electrode surface. It was found that some kind of pores had been formed on the BLM by AFM. The phenomenon is attributed to the interaction of K7Fe3+P2W17O62H2 with phosphatidylcholine phosphate groups located in its outer leaflet. Experimental results are helpful to understand the biological activity of the polyoxometalates in vivo.
Resumo:
The adsorption and oxidation of yeast RNA and herring sperm DNA (HS DNA) at glass carbon (GC) electrode are studied by differential pulse voltammetry (DPV) and in situ FTIR spectroelectrochemistry. Two oxidation peaks of yeast RNA are obtained by DPV, whose peak potentials shift negatively with increasing pH. The peak currents decrease gradually in successive scans and no corresponding reduction peaks occur, thus indicating that the oxidation process of yeast RNA is completely irreversible. The IR bands in the 1200-1800 cm-l range, attributed to the stretching and ring vibrations of nucleic acid bases, show the main spectral changes when the potential is shifted positively, which gives evidence that the oxidation process takes place in the base residues. The oxidation process of HS DNA is similar to that of yeast RNA. The results both from DPV and in situ FTIR spectroelectrochemistry confirm that the guanine and adenine residues can be oxidized at the electrode surface, which is consistent with the oxidation mechanism of nucleic acids proposed previously. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The current equation of the electrocatalytic reaction at a microdisk electrode modified with redox species has been described and verified experimentally. There exists a linear relationship between plateau limiting current and the radius of the microdisk electrode for a catalytic process. The influence of the dimensions of the microdisk electrode on catalytic efficiency is discussed. The polyvinylferrocene (PVFc)-modified microdisk electrode prepared by the coating method was taken as a typical example, on which the electrocatalytic oxidation of ascorbic acid could be studied. The catalytic reaction rate constants were determined as an average value of 1.5 X 10(-7) cm3/mol s by this method, and are consistent with those obtained at a conventional electrode.
Resumo:
The present paper deals with the distribution patterns of heavy metals and the associated influencing factors in the Yalu River Estuary and its adjacent coastal waters. Based upon the analysis of the surficial and core sediments measurements, the pollution of heavy metal and potential ecological risk were evaluated. The burial flux and contents of heavy metals (except for copper) have been continuously increasing since the 1920s. Therefore, the gross potential ecological risk for the sediments was high or very high, and the study area was endangered by heavy metals contamination. Heavy metals originated mainly from upstream pollutant input, correlation analysis showed that chromium, nickel, zinc, cadmium, lead, arsenic, and mercury in the sediments of the middle and west channels as well as the sea area of the western Yalu River Estuary concentrations were most probably derived from similar sources. In contrast, the metal of copper most probably originated from sources different from the other metals. Preliminary studies indicate that copper contamination was most likely the result of emission from mining activities situated at the upstream of the river. The contents of heavy metals in the sediments of estuarine turbidity maximum zone of Yalu River were larger than those of any other areas in the middle channel. With large portion of fine sediments, weaker hydrodynamics, and richer sources of heavy metals, the sediments of the west channel, were even more enriched with heavy metals than those of the middle channel.
Resumo:
The recognition that urban groundwater is a potentially valuable resource for potable and industrial uses due to growing pressures on perceived less polluted rural groundwater has led to a requirement to assess the groundwater contamination risk in urban areas from industrial contaminants such as chlorinated solvents. The development of a probabilistic risk based management tool that predicts groundwater quality at potential new urban boreholes is beneficial in determining the best sites for future resource development. The Borehole Optimisation System (BOS) is a custom Geographic Information System (GIs) application that has been developed with the objective of identifying the optimum locations for new abstraction boreholes. BOS can be applied to any aquifer subject to variable contamination risk. The system is described in more detail by Tait et al. [Tait, N.G., Davison, J.J., Whittaker, J.J., Lehame, S.A. Lerner, D.N., 2004a. Borehole Optimisation System (BOS) - a GIs based risk analysis tool for optimising the use of urban groundwater. Environmental Modelling and Software 19, 1111-1124]. This paper applies the BOS model to an urban Permo-Triassic Sandstone aquifer in the city centre of Nottingham, UK. The risk of pollution in potential new boreholes from the industrial chlorinated solvent tetrachloroethene (PCE) was assessed for this region. The risk model was validated against contaminant concentrations from 6 actual field boreholes within the study area. In these studies the model generally underestimated contaminant concentrations. A sensitivity analysis showed that the most responsive model parameters were recharge, effective porosity and contaminant degradation rate. Multiple simulations were undertaken across the study area in order to create surface maps indicating areas of low PCE concentrations, thus indicating the best locations to place new boreholes. Results indicate that northeastern, eastern and central regions have the lowest potential PCE concentrations in abstraction groundwater and therefore are the best sites for locating new boreholes. These locations coincide with aquifer areas that are confined by low permeability Mercia Mudstone deposits. Conversely southern and northwestern areas are unconfined and have shallower depth to groundwater. These areas have the highest potential PCE concentrations. These studies demonstrate the applicability of BOS as a tool for informing decision makers on the development of urban groundwater resources. (c) 2007 Elsevier Ltd. All rights reserved.