985 resultados para Maximum precipitation
Resumo:
The Ebro River Basin, with around 85 000 km2 and located in NE Spain, is characterized by the high spatial heterogeneity of its geology, topography, climatology and land use. Rainfall is one of the most important climatic variables studied owing to its non-homogenous behaviour in event and intensity, which creates drought, water runoff and soil erosion with negative environmental and social consequences. In this work we characterized the rainfall variability pattern in the Ebro River Basin using universal multifractal (UM) analysis, which estimates the concentration of the data around the precipitation average (C1, codimension average), the degree of multiscaling behaviour in time (? index) and the maximum probable singularity in the rainfall distribution ( s). A spatial and temporal analysis of the UM parameters is applied to study the possible changes. With this porpoise, 60 daily rainfall series were selected from 132 synthetic series generated by Luna and Balairón (AEMet). These daily rainfall series present a length of 60 years, from 1950 to 2009. Each one of them was subdivided (1950?1970 and 1980?2009) to analyse the difference between the two periods. The range of variation of precipitation amounts and the frequency of dry events between both periods are discussed, as well as the evolution of the UM parameters through the years.
Resumo:
As the water vapor content in the atmosphere scales with temperature, a warmer world is expected to feature an intensification of the hydrological cycle. Work to date has mainly focused on mean precipitation changes, whose connection to climatic modes is elusive at a global scale. Here we show that continental precipitation annual amplitude, which represents the annual range between minimum and maximum (monthly) rainfall, covaries with a linear combination of the Atlantic Multidecadal Oscillation and low-frequency variations in the El Niño–Southern Oscillation on a decadal to multidecadal scale with a correlation coefficient of 0.92 (P<0.01). The teleconnection is a result of changes in moisture transport in key regions. Reported trends in the annual amplitude of global precipitation in recent decades need to be assessed in light of this substantial low-frequency variability, which could mask or enhance an anthropogenic signal in hydrological cycle changes.
Resumo:
The normalised difference vegetation index (NDVI) has evolved as a primary tool for monitoring continental-scale vegetation changes and interpreting the impact of short to long-term climatic events on the biosphere. The objective of this research was to assess the nature of relationships between precipitation and vegetation condition, as measured by the satellite-derived NDVI within South Australia. The correlation, timing and magnitude of the NDVI response to precipitation were examined for different vegetation formations within the State (forest, scrubland, shrubland, woodland and grassland). Results from this study indicate that there are strong relationships between precipitation and NDVI both spatially and temporally within South Australia. Differences in the timing of the NDVI response to precipitation were evident among the five vegetation formations. The most significant relationship between rainfall and NDVI was within the forest formation. Negative correlations between NDVI and precipitation events indicated that vegetation green-up is a result of seasonal patterns in precipitation. Spatial patterns in the average NDVI over the study period closely resembled the boundaries of the five classified vegetation formations within South Australia. Spatial variability within the NDVI data set over the study period differed greatly between and within the vegetation formations examined depending on the location within the state. ACRONYMS AVHRR Advanced Very High Resolution Radiometer ENVSAEnvironments of South Australia EOS Terra-Earth Observing System EVIEnhanced Vegetation Index MODIS Moderate Resolution Imaging Spectro-radiometer MVC Maximum Value Composite NDVINormalised Difference Vegetation Index NIRNear Infra-Red NOAANational Oceanic and Atmospheric Administration SPOT Systeme Pour l’Observation de la Terre. [ABSTRACT FROM AUTHOR]
Resumo:
We investigated controls on the water chemistry of a South Ecuadorian cloud forest catchment which is partly pristine, and partly converted to extensive pasture. From April 2007 to May 2008 water samples were taken weekly to biweekly at nine different subcatchments, and were screened for differences in electric conductivity, pH, anion, as well as element composition. A principal component analysis was conducted to reduce dimensionality of the data set and define major factors explaining variation in the data. Three main factors were isolated by a subset of 10 elements (Ca2+, Ce, Gd, K+, Mg2+, Na+, Nd, Rb, Sr, Y), explaining around 90% of the data variation. Land-use was the major factor controlling and changing water chemistry of the subcatchments. A second factor was associated with the concentration of rare earth elements in water, presumably highlighting other anthropogenic influences such as gravel excavation or road construction. Around 12% of the variation was explained by the third component, which was defined by the occurrence of Rb and K and represents the influence of vegetation dynamics on element accumulation and wash-out. Comparison of base- and fast flow concentrations led to the assumption that a significant portion of soil water from around 30 cm depth contributes to storm flow, as revealed by increased rare earth element concentrations in fast flow samples. Our findings demonstrate the utility of multi-tracer principal component analysis to study tropical headwater streams, and emphasize the need for effective land management in cloud forest catchments.