962 resultados para Maximum entropy method
Resumo:
A new method for decision making that uses the ordered weighted averaging (OWA) operator in the aggregation of the information is presented. It is used a concept that it is known in the literature as the index of maximum and minimum level (IMAM). This index is based on distance measures and other techniques that are useful for decision making. By using the OWA operator in the IMAM, we form a new aggregation operator that we call the ordered weighted averaging index of maximum and minimum level (OWAIMAM) operator. The main advantage is that it provides a parameterized family of aggregation operators between the minimum and the maximum and a wide range of special cases. Then, the decision maker may take decisions according to his degree of optimism and considering ideals in the decision process. A further extension of this approach is presented by using hybrid averages and Choquet integrals. We also develop an application of the new approach in a multi-person decision-making problem regarding the selection of strategies.
Resumo:
PURPOSE: Effective cancer treatment generally requires combination therapy. The combination of external beam therapy (XRT) with radiopharmaceutical therapy (RPT) requires accurate three-dimensional dose calculations to avoid toxicity and evaluate efficacy. We have developed and tested a treatment planning method, using the patient-specific three-dimensional dosimetry package 3D-RD, for sequentially combined RPT/XRT therapy designed to limit toxicity to organs at risk. METHODS AND MATERIALS: The biologic effective dose (BED) was used to translate voxelized RPT absorbed dose (D(RPT)) values into a normalized total dose (or equivalent 2-Gy-fraction XRT absorbed dose), NTD(RPT) map. The BED was calculated numerically using an algorithmic approach, which enabled a more accurate calculation of BED and NTD(RPT). A treatment plan from the combined Samarium-153 and external beam was designed that would deliver a tumoricidal dose while delivering no more than 50 Gy of NTD(sum) to the spinal cord of a patient with a paraspinal tumor. RESULTS: The average voxel NTD(RPT) to tumor from RPT was 22.6 Gy (range, 1-85 Gy); the maximum spinal cord voxel NTD(RPT) from RPT was 6.8 Gy. The combined therapy NTD(sum) to tumor was 71.5 Gy (range, 40-135 Gy) for a maximum voxel spinal cord NTD(sum) equal to the maximum tolerated dose of 50 Gy. CONCLUSIONS: A method that enables real-time treatment planning of combined RPT-XRT has been developed. By implementing a more generalized conversion between the dose values from the two modalities and an activity-based treatment of partial volume effects, the reliability of combination therapy treatment planning has been expanded.
Resumo:
We present a new asymptotic formula for the maximum static voltage in a simplified model for on-chip power distribution networks of array bonded integrated circuits. In this model the voltage is the solution of a Poisson equation in an infinite planar domain whose boundary is an array of circular pads of radius ", and we deal with the singular limit Ɛ → 0 case. In comparison with approximations that appear in the electronic engineering literature, our formula is more complete since we have obtained terms up to order Ɛ15. A procedure will be presented to compute all the successive terms, which can be interpreted as using multipole solutions of equations involving spatial derivatives of functions. To deduce the formula we use the method of matched asymptotic expansions. Our results are completely analytical and we make an extensive use of special functions and of the Gauss constant G
Resumo:
This paper is concerned with the derivation of new estimators and performance bounds for the problem of timing estimation of (linearly) digitally modulated signals. The conditional maximum likelihood (CML) method is adopted, in contrast to the classical low-SNR unconditional ML (UML) formulationthat is systematically applied in the literature for the derivationof non-data-aided (NDA) timing-error-detectors (TEDs). A new CML TED is derived and proved to be self-noise free, in contrast to the conventional low-SNR-UML TED. In addition, the paper provides a derivation of the conditional Cramér–Rao Bound (CRB ), which is higher (less optimistic) than the modified CRB (MCRB)[which is only reached by decision-directed (DD) methods]. It is shown that the CRB is a lower bound on the asymptotic statisticalaccuracy of the set of consistent estimators that are quadratic with respect to the received signal. Although the obtained boundis not general, it applies to most NDA synchronizers proposed in the literature. A closed-form expression of the conditional CRBis obtained, and numerical results confirm that the CML TED attains the new bound for moderate to high Eg/No.
Resumo:
This paper provides a systematic approach to theproblem of nondata aided symbol-timing estimation for linearmodulations. The study is performed under the unconditionalmaximum likelihood framework where the carrier-frequencyerror is included as a nuisance parameter in the mathematicalderivation. The second-order moments of the received signal arefound to be the sufficient statistics for the problem at hand and theyallow the provision of a robust performance in the presence of acarrier-frequency error uncertainty. We particularly focus on theexploitation of the cyclostationary property of linear modulations.This enables us to derive simple and closed-form symbol-timingestimators which are found to be based on the well-known squaretiming recovery method by Oerder and Meyr. Finally, we generalizethe OM method to the case of linear modulations withoffset formats. In this case, the square-law nonlinearity is foundto provide not only the symbol-timing but also the carrier-phaseerror.
Resumo:
In this letter, we obtain the Maximum LikelihoodEstimator of position in the framework of Global NavigationSatellite Systems. This theoretical result is the basis of a completelydifferent approach to the positioning problem, in contrastto the conventional two-steps position estimation, consistingof estimating the synchronization parameters of the in-viewsatellites and then performing a position estimation with thatinformation. To the authors’ knowledge, this is a novel approachwhich copes with signal fading and it mitigates multipath andjamming interferences. Besides, the concept of Position–basedSynchronization is introduced, which states that synchronizationparameters can be recovered from a user position estimation. Weprovide computer simulation results showing the robustness ofthe proposed approach in fading multipath channels. The RootMean Square Error performance of the proposed algorithm iscompared to those achieved with state-of-the-art synchronizationtechniques. A Sequential Monte–Carlo based method is used todeal with the multivariate optimization problem resulting fromthe ML solution in an iterative way.
Resumo:
A new method for decision making that uses the ordered weighted averaging (OWA) operator in the aggregation of the information is presented. It is used a concept that it is known in the literature as the index of maximum and minimum level (IMAM). This index is based on distance measures and other techniques that are useful for decision making. By using the OWA operator in the IMAM, we form a new aggregation operator that we call the ordered weighted averaging index of maximum and minimum level (OWAIMAM) operator. The main advantage is that it provides a parameterized family of aggregation operators between the minimum and the maximum and a wide range of special cases. Then, the decision maker may take decisions according to his degree of optimism and considering ideals in the decision process. A further extension of this approach is presented by using hybrid averages and Choquet integrals. We also develop an application of the new approach in a multi-person decision-making problem regarding the selection of strategies.
Resumo:
Objective To evaluate the utility of a new multimodal image-guided intervention technique to detect epileptogenic areas with a gamma probe as compared with intraoperative electrocorticography. Materials and Methods Two symptomatic patients with refractory epilepsy underwent magnetic resonance imaging, videoelectroencephalography, brain SPECT scan, neuropsychological evaluation and were submitted to gamma probe-assisted surgery. Results In patient 1, maximum radioactive count was initially observed on the temporal gyrus at about 3.5 cm posteriorly to the tip of the left temporal lobe. After corticotomy, the gamma probe indicated maximum count at the head of the hippocampus, in agreement with the findings of intraoperative electrocorticography. In patient 2, maximum count was observed in the occipital region at the transition between the temporal and parietal lobes (right hemisphere). During the surgery, the area of epileptogenic activity mapped at electrocorticography was also delimited, demarcated, and compared with the gamma probe findings. After lesionectomy, new radioactive counts were performed both in the patients and on the surgical specimens (ex-vivo). Conclusion The comparison between intraoperative electrocorticography and gamma probe-assisted surgery showed similarity of both methods. The advantages of gamma probe include: noninvasiveness, low cost and capacity to demonstrate decrease in the radioactive activity at the site of excision after lesionectomy.
Resumo:
A BASIC computer program (REMOVAL) was developed to compute in a VAXNMS environment all the calculations of the removal method for population size estimation (catch-effort method for closed populations with constant sampling effort). The program follows the maximum likelihood methodology,checks the failure conditions, applies the appropriate formula, and displays the estimates of population size and catchability, with their standard deviations and coefficients of variation, and two goodness-of-fit statistics with their significance levels. Data of removal experiments for the cyprinodontid fish Aphanius iberus in the Alt Emporda wetlands are used to exemplify the use of the program
Resumo:
Chromium(III) at the ng L-1 level was extracted using partially silylated MCM-41 modified by a tetraazamacrocyclic compound (TAMC) and determined by inductively coupled plasma optical emision spectrometry (ICP OES). The extraction time and efficiency, pH and flow rate, type and minimum amount of stripping acid, and break- through volume were investigated. The method's enrichment factor and detection limit are 300 and 45.5 pg mL-1, respectively. The maximum capacity of the 10 mg of modified silylated MCM-41 was found to be 400.5±4.7 µg for Cr(III). The method was applied to the determination of Cr(III) and Cr(VI) in the wastewater of the chromium electroplating industry and in environmental and biological samples (black tea, hot and black pepper).
Resumo:
A flow injection method for the quantitative analysis of ketoconazole in tablets, based on the reaction with iron (III) ions, is presented. Ketoconazole forms a red complex with iron ions in an acid medium, with maximum absorbance at 495 nm. The detection limit was estimated to be 1×10--4 mol L-1; the quantitation limit is about 3×10--4 mol L-1 and approximately 30 determinations can be performed in an hour. The results were compared with those obtained with a reference HPLC method. Statistical comparisons were done using the Student's t procedure and the F test. Complete agreement was found at the 0.95 significance level between the proposed flow injection and the HPLC procedures. The two methods present similar precision, i.e., for HPLC the mean relative standard deviation was ca. 1.2% and for FIA ca. 1.6%.
Resumo:
Two analytical methods were validated for determination of trichlorophenols, tetrachlorophenols and pentachlorophenol in drinking water. Limits of quantification were at least ten times lower than maximum permissible levels set by the Brazilian legislation, which are 200 ng mL-1 for 2,4,6-trichlorophenol and 9 ng mL-1 for pentachlorophenol. Chlorophenol levels were determined in tap water collected in the Municipality of Rio de Janeiro. 2,4,6-Trichlorophenol residues were detected in 36% of the samples, varying from 0.008 to 0.238 ng mL-1. All other analytes were below the limit of quantification. The validated methods showed to be suitable for application in routine quality control.
Resumo:
A simple spectrophotometric method for the determination of cefotaxime, ceftriaxone, cefadroxil and cephalexin with variamine blue is presented. The determination is based on the hydrolysis of β-lactam ring of cephalosporins with sodium hydroxide which subsequently reacts with iodate to liberate iodine in acidic medium. The liberated iodine oxidizes variamine blue to violet colored species of maximum absorption at 556 nm. The absorbance is measured within the pH range of 4.0-4.2. Beer's law is obeyed in the range of 0.5-5.8 µg mL-1, 0.2-7.0 µg mL-1, 0.2-5.0 µg mL-1 and 0.5-8.5 µg mL-1 for cefotaxime, ceftriaxone, cefadroxil and cephalexin respectively. The analytical parameters were optimized and the method is successfully applied for the determination of cefotaxime, ceftriaxone, cefadroxil and cephalexin in pharmaceuticals.
Resumo:
A simple, rapid, accurate and inexpensive spectrophotometric method for the determination of tetracycline and doxycycline has been developed. The method is based on the reaction between these drugs and chloramine-T in alkaline medium producing red color products with absorbance maximum at the Λ = 535 and 525 nm for the tetracycline and doxycycline, respectively. The best conditions for the reactions have been found using multivariate method. Beer´s law is obeyed in a concentration ranges 1.03 x 10-5 to 3.61 x 10-4 mol L-1 and 1.75 x 10-5 to 3.48 x 10-4 mol L-1 for the tetracycline and doxycycline, respectively. The quantification limits were 5.63 x 10-6 mol L-1 and 7.12 x 10-7 mol L-1 for the tetracycline and doxycycline, respectively. The proposed method was successfully applied to the determination of these drugs in pharmaceutical formulations and the results obtained were in good agreement with those obtained by the comparative method at the 95% confidence level.
Resumo:
In this study is presented an economic optimization method to design telescope irrigation laterals (multidiameter) with regular spaced outlets. The proposed analytical hydraulic solution was validated by means of a pipeline composed of three different diameters. The minimum acquisition cost of the telescope pipeline was determined by an ideal arrangement of lengths and respective diameters for each one of the three segments. The mathematical optimization method based on the Lagrange multipliers provides a strategy for finding the maximum or minimum of a function subject to certain constraints. In this case, the objective function describes the acquisition cost of pipes, and the constraints are determined from hydraulic parameters as length of irrigation laterals and total head loss permitted. The developed analytical solution provides the ideal combination of each pipe segment length and respective diameter, resulting in a decreased of the acquisition cost.