950 resultados para Maxima and minima.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our rock magnetic analysis of core Ph05 from the West Philippine Sea demonstrates that the core preserves a strong, stable remanent magnetization and meets the magnetic mineral criteria for relative paleointensity (RPI) analyses. The magnetic minerals in the sequence are dominated by pseudosingle-domain magnetite, and the concentration of magnetic minerals is at the same scale. Both the conventional normalizing method and the pseudo-Thellier method were used in conjunction with the examination of the rock magnetic properties and natural remanent magnetization. Susceptibility (chi), anhysteretic remnant magnetization (ARM) and saturation isothermal remnant magnetization (SIRM) were used as the natural remanent magnetization normalizer. However, coherence analysis indicated that only ARM is more suitable for paleointensity reconstruction. The age model of core is established based on oxygen isotope data and AMS(14)C data, which is consistent with the age model estimated from RPI records. The relative paleointensity data provide a continuous record of the intensity variation during the last 200 ka, which correlates well with the global references RPI stacks. Several prominent low paleointensity values are identified and are correlated to the main RPI minima in the SINT-200 record, suggesting that the sediments have recorded the real changes of geomagnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of field observation carried out in May 2003 were used to examine pH and total alkalinity behaviors in the Changjiang Estuary. It was showed that PH and total alkalinity took on clear spatial variations in values with the minima in the low salinity region. Like salinity, transect distributions of PH and total alkalinity (TA) in a downriver direction had a sharp gradient each. These gradients appeared in such a sequence that the TA gradient was earlier than salinity and PH gradients, and the salinity gradient was earlier than the PH gradient. These distribution characteristics seemed to be strongly influenced by the mixing process of freshwater and seawater, for both PH and total alkalinity had significant linear relationships with salinity and temperature. For PH, phytoplankton activities also had a significant impact upon its spatial distribution. During a period of 48 h, PH and total alkalinity changed within wide ranges for every layer of the two anchor stations, namely, Stas 13 and 20, which were located at the mixed water mass and seawater mass, respectively. For both Stas 13 and 20, PH and TA fluctuation of every layer could be very wide during a 4 h period. As a whole, the data of the two anchor stations showed that neither variations in salinity and temperature nor phytoplankton activities were the main factors strongly influencing the total alkalinity temporal variability on a small time scale. The data of Sta. 20 implied that both salinity variation and phytoplankton activities had a significant influence on PH temporal variability, but the same conclusion could not be drawn from the data of Sta. 13.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar ultraviolet (UV) radiation at wavelengths less than 400 nm is an important source of energy for aeronomic processes throughout the solar system. Solar UV photons are absorbed in planetary atmospheres, as well as throughout the heliosphere, via photodissociation of molecules, photoionization of molecules and atoms, and photoexcitation toexcitation including resonance scattering. In this paper, the solar irradiances data measured by TIMED SEE, as well as the solar proxies such as F10.7 and Mg II, thermosphere neutral density of CHAMP measurements and topside ionospheric plasmas densities from DMSP, are used to analyze solar irradiance effects on the variabilities of the thermosphere and the ionosphere. First, thermosphere densities near 410 km altitude are analyzed for solar irradiance variability effects during the period 2002-2004. Correlations between the densities and the solar irradiances for different spectral lines and wavelength ranges reveal significantly different characteristics. The density correlates remarkably well with all the selected solar irradiances except the lower chromospheric O I (130.4 nm) emission. Among the chosen solar proxies, the Mg II core-to-wing ratio index, EUV (30-120 nm) and F10.7 show the highest correlations with the density for short-term (< ~27 days) variations. For both long- (> ~27 days) and short-term variations, linear correlation coefficients exhibit a decreasing trend from low latitudes towards high latitudes. The density variability can be effectively modeled (capturing 71% of the variance) using multiple solar irradiance indices, including F10.7, SEUV (the EUV 30-120 nm index), and SFUV (the FUV 120-193 nm index), in which a lag time of 1 day was used for both F10.7 and SEUV, and 5 days for SFUV. In our regression formulation SEUV has the largest contribution to the density variation (40%), with the F10.7 having the next largest contribution (32%) and SFUV accounting for the rest (28%). Furthermore, a pronounced period of about 27.2 days (mean period of the Sun's rotation) is present in both density and solar irradiance data of 2003 and 2004, and a pronounced period of about 54.4 days (doubled period of the solar rotation) is also revealed in 2004. However, soft X-ray and FUV irradiances did not present a pronounced 54.4 day period in 2004, in spite of their high correlation with the densities. The Ap index also shows 54-day periodicities in 2004, and magnetic activity, together with solar irradiance, affects the 54-day variation in density significantly. In addition, NRLMSISE00, DTM-2000 and JB2006 model predictions are compared with density measurements from CHAMP to assess their accuracy, and the results show that these models underestimate the response of the thermosphere to variations induced by solar rotation. Next, the equatorial topside ionospheric plasmas densities Ni are analyzed for solar irradiance variability effects during the period 2002-2005. Linear correlations between Ni and the solar irradiances for different wavelength ranges reveal significantly different characteristics. XUV (0-35 nm) and EUV (115-130 nm) show higher correlation with Ni for the long-term variations, whereas EUV (35-115 nm) show higher correlation for the short-term variations. Moreover, partial correlation analysis shows that the long-term variations of Ni are affected by both XUV (0-35 nm) and EUV (35-115 nm), whereas XUV (0-35 nm) play a more important role; the short-term variations of Ni are mostly affected by EUV (35-115 nm). Furthermore, a pronounced period of about 27 days is present in both Ni and solar irradiance data of 2003 and 2004, and a pronounced period of about 54 days is also revealed in 2004. Finally, prompted by previous studies that have suggested solar EUV radiation as a means of driving the semiannual variation, we investigate the intra-annual variation in thermosphere neutral density near 400 km during 2002-2005. The intra-annual variation, commonly referred to as the ‘semiannual variation’, is characterized by significant latitude structure, hemispheric asymmetries, and inter-annual variability. The magnitude of the maximum yearly difference, from the yearly minimum to the yearly maximum, varies by as much as 60% from year to year, and the phases of the minima and maxima also change by 20-40 days from year to year. Each annual harmonic of the intra-annual variation, namely, annual, semiannual, ter-annual and quatra-annual, exhibits a decreasing trend from 2002 through 2005 that is correlated with the decline in solar activity. In addition, some variations in these harmonics are correlated with geomagnetic activity, as represented by the daily mean value of Kp. Recent empirical models of the thermosphere are found to be deficient in capturing most of the latitude dependencies discovered in our data. In addition, the solar flux and geomagnetic activity proxies that we have employed do not capture some latitude and inter-annual variations detected in our data. It is possible that these variations are partly due to other effects, such as seasonal-latitudinal variations in turbopause altitude (and hence O/N2 composition) and ionosphere coupling processes that remain to be discovered in the context of influencing the intra-annual variations depicted here. Our results provide a new dataset to challenge and validate thermosphere-ionosphere general circulation models that seek to delineate the thermosphere intra-annual variation and to understand the various competing mechanisms that may contribute to its existence and variability. We furthermore suggest that the term “intra-annual” variation be adopted to describe the variability in thermosphere and ionosphere parameters that is well-captured through a superposition of annual, semiannual, ter-annual, and quatra-annual harmonic terms, and that “semiannual’ be used strictly in reference to a pure 6-monthly sinusoidal variation. Moreover, we propose the term “intra-seasonal” to refer to those shorter-term variations that arise as residuals from the above Fourier representation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Winter, Rudolf; Heitjans, P., (2001) 'Li+ Diffusion and its Structural Basis in the Nanocrystalline and Amorphous Forms of Two-dimensionally Ion-conducting LixTiS2', Journal of Physical Chemistry B 105(26) pp.6108-6115 RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Potatoes (Solanum Tuberosum L.) contain secondary metabolites that may have an impact on human health. The aim of this study was to assess the levels of some of these compounds in a wide range of varieties, including rare, heritage and commercial cultivars. Vitamin C, total carotenoids, phenolics, flavonoids, antioxidant activity and glycoalkaloids were determined, using spectroscopy and chromatography, in the skin and flesh of tubers grown in field trials. Transcript levels of key synthetic enzymes were assessed by qPCR. Accumulation of selected metabolites was higher in the skin than in the flesh of tubers, except ascorbate, which was undetected in the skin. Differences were on average 2.5 to 3-fold for carotenoids, 6-fold for phenolics, 15 to 16-fold for flavonoids, 21-fold for glycoalkaloids and 9 to 10-fold for antioxidant activity. Higher contents of carotenoids were associated with yellow skin or flesh, and higher values of phenolics, flavonoids and antioxidant activity with blue flesh. Variety ‘Burren’ had maxima values of carotenoids in skin and flesh, variety ‘Nicola’ of ascorbate, variety ‘Congo’ of phenolics, flavonoids and antioxidant activity in both tissues, except antioxidant activity in the skin, which was higher in ‘Edzell Blue’. Varieties ‘May Queen’ and ‘International Kidney’ had highest glycoalkaloid content in skin and flesh respectively. The effect of the environment was diverse: year of cultivation was significant for all metabolites, but site of cultivation was not for carotenoids and glycoalkaloids. Levels of expression of phenylalanine ammonia-lyase and chalcone synthase were higher in varieties accumulating high contents of phenolic compounds. However, levels of expression of phytoene synthase and L-galactono-1,4-lactone dehydrogenase were not different between varieties showing contrasting levels of carotenoids and ascorbate respectively. This work will help identify varieties that could be marketed as healthier and the most suitable varieties for extraction of high-value metabolites such as glycoalkaloids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last two decades, semiconductor nanocrystals have been the focus of intense research due to their size dependant optical and electrical properties. Much is now known about how to control their size, shape, composition and surface chemistry, allowing fine control of their photophysical and electronic properties. However, genuine concerns have been raised regarding the heavy metal content of these materials, which is toxic even at relatively low concentrations and may limit their wide scale use. These concerns have driven the development of heavy metal free alternatives. In recent years, germanium nanocrystals (Ge NCs) have emerged as environmentally friendlier alternatives to II-VI and IV-VI semiconductor materials as they are nontoxic, biocompatible and electrochemically stable. This thesis reports the synthesis and characterisation of Ge NCs and their application as fluorescence probes for the detection of metal ions. A room-temperature method for the synthesis of size monodisperse Ge NCs within inverse micelles is reported, with well-defined core diameters that may be tuned from 3.5 to 4.5 nm. The Ge NCs are chemically passivated with amine ligands, minimising surface oxidation while rendering the NCs dispersible in a range of polar solvents. Regulation of the Ge NCs size is achieved by variation of the ammonium salts used to form the micelles. A maximum quantum yield of 20% is shown for the nanocrystals, and a transition from primarily blue to green emission is observed as the NC diameter increases from 3.5 to 4.5 nm. A polydisperse sample with a mixed emission profile is prepared and separated by centrifugation into individual sized NCs which each showed blue and green emission only, with total suppression of other emission colours. A new, efficient one step synthesis of Ge NCs with in situ passivation and straightforward purification steps is also reported. Ge NCs are formed by co-reduction of a mixture of GeCl4 and n-butyltrichlorogermane; the latter is used both as a capping ligand and a germanium source. The surface-bound layer of butyl chains both chemically passivates and stabilises the Ge NCs. Optical spectroscopy confirmed that these NCs are in the strong quantum confinement regime, with significant involvement of surface species in exciton recombination processes. The PL QY is determined to be 37 %, one of the highest values reported for organically terminated Ge NCs. A synthetic method is developed to produce size monodisperse Ge NCs with modified surface chemistries bearing carboxylic acid, acetate, amine and epoxy functional groups. The effect of these different surface terminations on the optical properties of the NCs is also studied. Comparison of the emission properties of these Ge NCs showed that the wavelength position of the PL maxima could be moved from the UV to the blue/green by choice of the appropriate surface group. We also report the application of water-soluble Ge NCs as a fluorescent sensing platform for the fast, highly selective and sensitive detection of Fe3+ ions. The luminescence quenching mechanism is confirmed by lifetime and absorbance spectroscopies, while the applicability of this assay for detection of Fe3+ in real water samples is investigated and found to satisfy the US Environmental Protection Agency requirements for Fe3+ levels in drinkable water supplies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon sequestration in sandstone saline reservoirs holds great potential for mitigating climate change, but its storage potential and cost per ton of avoided CO2 emissions are uncertain. We develop a general model to determine the maximum theoretical constraints on both storage potential and injection rate and use it to characterize the economic viability of geosequestration in sandstone saline aquifers. When applied to a representative set of aquifer characteristics, the model yields results that compare favorably with pilot projects currently underway. Over a range of reservoir properties, maximum effective storage peaks at an optimal depth of 1600 m, at which point 0.18-0.31 metric tons can be stored per cubic meter of bulk volume of reservoir. Maximum modeled injection rates predict minima for storage costs in a typical basin in the range of $2-7/ ton CO2 (2005 U.S.$) depending on depth and basin characteristics in our base-case scenario. Because the properties of natural reservoirs in the United States vary substantially, storage costs could in some cases be lower or higher by orders of magnitude. We conclude that available geosequestration capacity exhibits a wide range of technological and economic attractiveness. Like traditional projects in the extractive industries, geosequestration capacity should be exploited starting with the low-cost storage options first then moving gradually up the supply curve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate ab initio intermolecular potential energy surfaces (IPES) have been obtained for the first time for the ground electronic state of the C 2H2-Kr and C2H2-Xe van der Waals complexes. Extensive tests, including complete basis set and all-electron scalar relativistic results, support their calculation at the CCSD(T) level of theory, using small-core relativistic pseudopotentials for the rare-gas atoms and aug-cc-pVQZ basis sets extended with a set of 3s3p2d1f1g mid-bond functions. All results are corrected for the basis set superposition error. The importance of the scalar relativistic and rare-gas outer-core (n.1)d correlation effects is investigated. The calculated IPES, adjusted to analytical functions, are characterized by global minima corresponding to skew T-shaped geometries, in which the Jacobi vector positioning the rare-gas atom with respect to the center of mass of the C2H2 moiety corresponds to distances of 4.064 and 4.229Å, and angles of 65.22° and 68.67° for C 2H2-Kr and C2H2-Xe, respectively. The interaction energy of both complexes is estimated to be -151.88 (1.817 kJ mol-1) and -182.76 cm-1 (2.186 kJ mol-1), respectively. The evolution of the topology of the IPES as a function of the rare-gas atom, from He to Xe, is also discussed. © 2012 Taylor and Francis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many of the leading ecological and evolutionary characteristics of populations are governed by their effective population size, which in turn is strongly influenced by the minimum census size. The succession of minima of increasing rank R in time is described by the expected value of the next minimum ωR and by the expected time TR elapsing before it occurs. The relationships of ωR and TR with R together determine the minimal population expected to be encountered within a given period of time. These relationships depend on the dynamic model for species abundance. The four main types of model investigated here have characteristically different successions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acantharian cysts were discovered in sediment trap samples from spring 2007 at 2000 m in the Iceland Basin. Although these single-celled organisms contribute to particulate organic matter flux in the upper mesopelagic, their contribution to bathypelagic particle flux has previously been found negligible. Four time-series sediment traps were deployed and all collected acantharian cysts, which are reproductive structures. Across all traps, cysts contributed on average 3-22%, and 4―24% of particulate organic carbon and nitrogen (POC and PON) flux, respectively, during three separate collection intervals (the maximum contribution in any one trap was 48% for POC and 59% for PON). Strontium (Sr) flux during these 6 weeks reached 3 mg m―2 d―1. The acantharian celestite (SrSO4) skeleton clearly does not always dissolve in the mesopelagic as often thought, and their cysts can contribute significantly to particle flux at bathypelagic depths during specific flux events. Their large size (∼ I mm) and mineral ballast result in a sinking rate of ∼ 500 m d―1; hence, they reach the bathypelagic before dissolving. Our findings are consistent with a vertical profile of salinity-normalized Sr concentration in the Iceland Basin, which shows a maximum at 1700 m. Profiles of salinity-normalized Sr concentration in the subarctic Pacific reach maxima at ≤ 1500 m, suggesting that Acantharia might contribute to the bathypelagic particle flux there as well. We hypothesize that Acantharia at high latitudes use rapid, deep sedimentation of reproductive cysts during phytoplankton blooms so that juveniles can exploit the large quantity of organic matter that sinks rapidly to the deep sea following a bloom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nano- and picoplankton community at Station L4 in the Western English Channel was studied between 2007 and 2013 by flow cytometry to quantify abundance and investigate seasonal cycles within these communities. Nanoplankton included both photosynthetic and heterotrophic eukaryotic single-celled organisms while the picoplankton included picoeukaryote phytoplankton, Synechococcus sp. cyanobacteria and heterotrophic bacteria. A Box–Jenkins Transfer Function climatology analysis of surface data revealed that Synechococcus sp., cryptophytes, and heterotrophic flagellates had bimodal annual cycles. Nanoeukaryotes and both high and low nucleic acid-containing bacteria (HNA and LNA, respectively) groups exhibited unimodal annual cycles. Phaeocystis sp., whilst having clearly defined abundance maxima in spring was not detectable the rest of the year. Coccolithophores exhibited a weak seasonal cycle, with abundance peaks in spring and autumn. Picoeukaryotes did not exhibit a discernable seasonal cycle at the surface. Timings of maximum group abundance varied through the year. Phaeocystis sp. and heterotrophic flagellates peaked in April/May. Nanoeukaryotes and HNA bacteria peaked in June/July and had relatively high abundance throughout the summer. Synechococcus sp., cryptophytes and LNA bacteria all peaked from mid to late September. The transfer function model techniques used represent a useful means of identifying repeating annual cycles in time series data with the added ability to detect trends and harmonic terms at different time scales from months to decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary productivity and subsequent carbon cycling in the coastal zone have a significant impact on the global carbon budget. It is currently unclear how anthropogenic activity could alter these budgets but long term coastal time series of hydrological, biogeochemical and biological measurements represent a key means to better understand past drivers, and hence to predicting future seasonal and inter-annual variability in carbon fixation in coastal ecosystems. An 8-year time series of primary production from 2003 to 2010, estimated using a recently developed absorption-based algorithm, was used to determine the nature and extent of change in primary production at a coastal station (L4) in the Western English Channel (WEC). Analysis of the seasonal and inter-annual variability in production demonstrated that on average, nano- and pico-phytoplankton account for 48% of the total carbon fixation and micro-phytoplankton for 52%. A recent decline in the primary production of nano- and pico-phytoplankton from 2005 to 2010 was observed, corresponding with a decrease in winter nutrient concentrations and a decrease in the biomass of Phaeocystis sp. Micro-phytoplankton primary production (PPM) remained relatively constant over the time series and was enhanced in summer during periods of high precipitation. Increases in sea surface temperature, and decreases in wind speeds and salinity were associated with later spring maxima in PPM. Together these trends indicate that predicted increases in temperature and decrease in wind speeds in future would drive later spring production whilst predicted increases in precipitation would also continue these blooms throughout the summer at this site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density functional calculations have been performed for ring isomers of sulfur with up to 18 atoms, and for chains with up to ten atoms. There are many isomers of both types, and the calculations predict the existence of new forms. Larger rings and chains are very flexible, with numerous local energy minima. Apart from a small, but consistent overestimate in the bond lengths, the results reproduce experimental structures where known. Calculations are also performed on the energy surfaces of S8 rings, on the interaction between a pair of such rings, and the reaction between one S8 ring and the triplet diradical S8 chain. The results for potential energies, vibrational frequencies, and reaction mechanisms in sulfur rings and chains provide essential ingredients for Monte Carlo simulations of the liquid–liquid phase transition. The results of these simulations will be presented in Part II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arrays of nickel and gold nanorods have been grown on glass and silicon substrates using porous alumina templates of less than 500 nm thickness. A method is demonstrated for varying the diameter of the nanorods whilst keeping the spacing constant. Optical extinction spectra for the gold nanorods show two distinct maxima associated with the transverse and longitudinal axes of the rods. Adding small quantities of oxygen to the aluminium before anodization is found to improve the sharpness of the extinction peaks. The spectral position of the longitudinal peak is shown to be sensitive to the nanorod diameter for constant length and spacing. For the nickel nanorods it is shown that the magnetic properties are governed by both interactions between the wires and shape anisotropy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maximakinin is an N-terminally extended bradykinin (DLPKINRKGPRPPGFSPFR) from the venom of a Chinese toad (Bombina maxima) that displays highly selective activity at mammalian arterial smooth muscle receptors. In this study, we report that incubation of maximakinin with either kallikrein or human saliva generates catabolites with enhanced bioactivity that retain the tissue selective effects of the parent molecule. In addition, we have observed that kallikrein rapidly cleaves the C-terminal arginyl residue of both maximakinin and bradykinin – a cleavage hitherto considered to be performed by a carboxypeptidase that facilitates selective bradykinin receptor targeting. Maximakinin has thus evolved as a `smart' defensive weapon in the toad with inherent resistance to the signal-terminating protease hardware in the potential predator. Thus, natural selection of amphibian skin peptides for antipredator defence, through interspecies delivery by an exogenous secretory mode, produces subtle structural stabilization modifications that can potentially provide new insights for the design of orally active and selectively targeted peptide therapeutics.