867 resultados para Markovian jump linear systems (MJLS)
Resumo:
This dissertation is concerned with the problem of determining the dynamic characteristics of complicated engineering systems and structures from the measurements made during dynamic tests or natural excitations. Particular attention is given to the identification and modeling of the behavior of structural dynamic systems in the nonlinear hysteretic response regime. Once a model for the system has been identified, it is intended to use this model to assess the condition of the system and to predict the response to future excitations.
A new identification methodology based upon a generalization of the method of modal identification for multi-degree-of-freedom dynaimcal systems subjected to base motion is developed. The situation considered herein is that in which only the base input and the response of a small number of degrees-of-freedom of the system are measured. In this method, called the generalized modal identification method, the response is separated into "modes" which are analogous to those of a linear system. Both parametric and nonparametric models can be employed to extract the unknown nature, hysteretic or nonhysteretic, of the generalized restoring force for each mode.
In this study, a simple four-term nonparametric model is used first to provide a nonhysteretic estimate of the nonlinear stiffness and energy dissipation behavior. To extract the hysteretic nature of nonlinear systems, a two-parameter distributed element model is then employed. This model exploits the results of the nonparametric identification as an initial estimate for the model parameters. This approach greatly improves the convergence of the subsequent optimization process.
The capability of the new method is verified using simulated response data from a three-degree-of-freedom system. The new method is also applied to the analysis of response data obtained from the U.S.-Japan cooperative pseudo-dynamic test of a full-scale six-story steel-frame structure.
The new system identification method described has been found to be both accurate and computationally efficient. It is believed that it will provide a useful tool for the analysis of structural response data.
Resumo:
The response of linear, viscous damped systems to excitations having time-varying frequency is the subject of exact and approximate analyses, which are supplemented by an analog computer study of single degree of freedom system response to excitations having frequencies depending linearly and exponentially on time.
The technique of small perturbations and the methods of stationary phase and saddle-point integration, as well as a novel bounding procedure, are utilized to derive approximate expressions characterizing the system response envelope—particularly near resonances—for the general time-varying excitation frequency.
Descriptive measurements of system resonant behavior recorded during the course of the analog study—maximum response, excitation frequency at which maximum response occurs, and the width of the response peak at the half-power level—are investigated to determine dependence upon natural frequency, damping, and the functional form of the excitation frequency.
The laboratory problem of determining the properties of a physical system from records of its response to excitations of this class is considered, and the transient phenomenon known as “ringing” is treated briefly.
It is shown that system resonant behavior, as portrayed by the above measurements and expressions, is relatively insensitive to the specifics of the excitation frequency-time relation and may be described to good order in terms of parameters combining system properties with the time derivative of excitation frequency evaluated at resonance.
One of these parameters is shown useful for predicting whether or not a given excitation having a time-varying frequency will produce strong or subtle changes in the response envelope of a given system relative to the steady-state response envelope. The parameter is shown, additionally, to be useful for predicting whether or not a particular response record will exhibit the “ringing” phenomenon.
Resumo:
The feedback coding problem for Gaussian systems in which the noise is neither white nor statistically independent between channels is formulated in terms of arbitrary linear codes at the transmitter and at the receiver. This new formulation is used to determine a number of feedback communication systems. In particular, the optimum linear code that satisfies an average power constraint on the transmitted signals is derived for a system with noiseless feedback and forward noise of arbitrary covariance. The noisy feedback problem is considered and signal sets for the forward and feedback channels are obtained with an average power constraint on each. The general formulation and results are valid for non-Gaussian systems in which the second order statistics are known, the results being applicable to the determination of error bounds via the Chebychev inequality.